Strength and polynomial functors

Arthur Bik
University of Bern

SIAM AG 2019, Bern, 9 July 2019
The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix A is

$$\operatorname{rk}(A) := \sup\{\operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A \in \mathbb{Z}_{\geq 0} \cup \{\infty\}\}$$

Lemma

$A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k \iff A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^\mathbb{N}$
The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix A is

$$\text{rk}(A) := \sup \{ \text{rk}(B) \mid \text{finite submatrices } B \text{ of } A \} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$$

Lemma

$A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k \iff A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^{\mathbb{N}}$

Example/Theorem

An $\mathbb{N} \times \mathbb{N}$ matrix A has rank $\infty \iff \text{GL}_\infty \cdot A \cdot \text{GL}_\infty = \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$
The rank of infinite-by-infinite matrices

Definition: The rank of an \(\mathbb{N} \times \mathbb{N} \) matrix \(A \) is

\[
\text{rk}(A) := \sup \{ \text{rk}(B) \mid \text{finite submatrices } B \text{ of } A \} \in \mathbb{Z}_{\geq 0} \cup \{ \infty \}
\]

Lemma
\(A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}} \) has rank \(\leq k \) \(\iff \) \(A = \sum_{i=1}^{k} v_i w_i^T \) with \(v_i, w_i \in \mathbb{C}^{\mathbb{N}} \)

Example/Theorem
An \(\mathbb{N} \times \mathbb{N} \) matrix \(A \) has rank \(\infty \) \(\iff \) \(\text{GL}_\infty \cdot A \cdot \text{GL}_\infty = \mathbb{C}^{\mathbb{N} \times \mathbb{N}} \)

Proof. An equation on \(\mathbb{C}^{\mathbb{N} \times \mathbb{N}} \) uses only finitely many rows and columns. So non-zero equations on \(\text{GL}_\infty \cdot A \cdot \text{GL}_\infty \) give rank constraints on \(A \). \(\square \)

Fact: An \(n \times m \) matrix \(A \) has rank \(\min(n, m) \) \(\iff \) \(\text{GL}_n \cdot A \cdot \text{GL}_m = \mathbb{C}^{n \times m} \)
Other Examples/Theorems

Definition: The rank of a tuple of $\mathbb{N} \times \mathbb{N}$ matrices A_1, \ldots, A_k is

$$
\text{rk}(A_1, \ldots, A_k) := \inf \{ \text{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}
$$

Example/Theorem (Draisma-Eggermont)

\[
\text{rk}(A_1, \ldots, A_k) = \infty \iff \overline{\text{GL}_\infty \cdot (A_1, \ldots, A_k) \cdot \text{GL}_\infty} = (\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^k
\]
Other Examples/Theorems

Definition: The rank of a tuple of \(\mathbb{N} \times \mathbb{N} \) matrices \(A_1, \ldots, A_k \) is

\[
\text{rk}(A_1, \ldots, A_k) := \inf \{ \text{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}
\]

Example/Theorem (Draisma-Eggermont)

\[
\text{rk}(A_1, \ldots, A_k) = \infty \iff \text{GL}_\infty \cdot (A_1, \ldots, A_k) \cdot \text{GL}_\infty = (\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^k
\]

Definition: The q-rank of a series

\[
f = a_{111} x_1^3 + a_{112} x_1^2 x_2 + \cdots + a_{ijk} x_i x_j x_k + \ldots
\]

is the minimal \(k \leq \infty \) such that

\[
f = \ell_1 q_1 + \cdots + \ell_k q_k \text{ with } \deg(\ell_i) = 1.
\]

Example/Theorem (Derksen-Eggermont-Snowden)

\[
\text{qrk}(f) = \infty \iff \text{GL}_\infty \cdot f = \lim_n \mathbb{C}[x_1, \ldots, x_n](3)
\]
Other Examples/Theorems

Take $d \geq 2$.

Definition (Ananyan-Hochster)
The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \cdots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree $< d$.
Take \(d \geq 2 \).

Definition (Ananyan-Hochster)
The strength of a polynomial \(f \in \mathbb{C}[x_0, \ldots, x_n]_d \) is the minimal \(k \) such that
\[
f = g_1 h_1 + \cdots + g_k h_k
\]
with \(g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n] \) homogeneous of degree \(\leq d \).

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every \(n \), let \(X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_d \) be a closed subset such that:

\((\ast)\) We have \(f \circ \ell \in X_m \) for all \(f \in X_n \) and all linear maps \(\ell: \mathbb{C}^m \to \mathbb{C}^n \).
Other Examples/Theorems

Take $d \geq 2$.

Definition (Ananyan-Hochster)
The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_d$ is the minimal k such that

$$f = g_1 h_1 + \cdots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree $< d$.

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_d$ be a closed subset such that:

(*): We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell: \mathbb{C}^m \rightarrow \mathbb{C}^n$.

Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_d$ for all $n \geq 0$.

Remark: This version implies the infinite version using Lang's theorem.
Other Examples/Theorems

Take \(d \geq 2 \).

Definition (Ananyan-Hochster)
The strength of a polynomial \(f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)} \) is the minimal \(k \) such that

\[
f = g_1 h_1 + \cdots + g_k h_k
\]

with \(g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n] \) homogeneous of degree \(< d \).

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every \(n \), let \(X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)} \) be a closed subset such that:

\((*) \) We have \(f \circ \ell \in X_m \) for all \(f \in X_n \) and all linear maps \(\ell : \mathbb{C}^m \to \mathbb{C}^n \).

Then either \(X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)} \) for all \(n \geq 0 \) or there is a \(k < \infty \) such that \(\text{str}(f) \leq k \) for all \(f \in X_n \) and \(n \geq 0 \).
Take $d \geq 2$.

Definition (Ananyan-Hochster)
The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \cdots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree $< d$.

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that:

(*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell : \mathbb{C}^m \to \mathbb{C}^n$.

Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ for all $n \geq 0$ or there is a $k < \infty$ such that $\text{str}(f) \leq k$ for all $f \in X_n$ and $n \geq 0$.

Remark: This version implies the infinite version using Lang’s theorem.
Polynomial functors

$\mathbf{Vec} =$ category of finite-dimensional vector spaces over \mathbb{C}.

Definition

A polynomial functor P assigns to $V \in \mathbf{Vec}$ a $P(V) \in \mathbf{Vec}$ and to $(V, W) \in \mathbf{Vec}^2$ a polynomial map $\hom_{\mathbb{C}}(V, W) \to \hom_{\mathbb{C}}(P(V), P(W))$ such that $P(\text{id}_V) = \text{id}_{P(V)}$ for all $V \in \mathbf{Vec}$ and $P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$ for all linear maps $\psi : V \to W$ and $\varphi : W \to U$.

Examples

- Constants: $V \mapsto U$ for $U \in \mathbf{Vec}$ fixed.
- Linear functors: $V \mapsto U \otimes V$ for $U \in \mathbf{Vec}$ fixed.
- Matrices: $V \mapsto V \otimes V$
- Polynomials: $V \mapsto S^d V$

Remark: The class of polynomial functors is closed under direct sums, tensor products, quotients and subfunctors. Polynomial functors have a degree. (This can be infinite, but we don’t consider such poly functors.)
Polynomial transformations and Closed subsets of polynomial functors

Definition

Let P, Q be polynomial functors. A polynomial transformation $\alpha : Q \rightarrow P$ is a family $(\alpha_V : Q(V) \rightarrow P(V))_{V \in \text{Vec}}$ of polynomial maps such that

$$
\begin{array}{c}
Q(V) \xrightarrow{\alpha_V} P(V) \\
| \quad | \\
Q(\ell) \quad P(\ell) \\
| \quad | \\
Q(W) \xrightarrow{\alpha_W} P(W)
\end{array}
$$

commutes for all linear maps $\ell : V \rightarrow W$.
Definition

Let P, Q be polynomial functors. A polynomial transformation $\alpha : Q \to P$ is a family $(\alpha_V : Q(V) \to P(V))_{V \in \text{Vec}}$ of polynomial maps such that

$$
\begin{array}{ccc}
Q(V) & \xrightarrow{\alpha_V} & P(V) \\
\downarrow Q(\ell) & & \downarrow P(\ell) \\
Q(W) & \xrightarrow{\alpha_W} & P(W)
\end{array}
$$

commutes for all linear maps $\ell : V \to W$.

Definition

A closed subset $X \subseteq P$ of a polynomial functor assigns to each $V \in \text{Vec}$ a closed subset $X(V) \subseteq P(V)$ such that $p(\varphi)(X(V)) \subseteq X(W)$ for all linear maps $\ell : V \to W$.
The dichotomy

Let P, Q be polynomial functors. Write $Q < P$ when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.
The dichotomy

Let P, Q be polynomial functors. Write $Q < P$ when $Q(d)$ is a quotient of $P(d)$ where d is maximal with $Q(d) \not\cong P(d)$.

Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq P$ be a closed subset. Then $X = P$ or there are $Q_1, \ldots, Q_k < P$ and $\alpha_i : Q_i \to P$ such that $X \subseteq \bigcup_i \text{im}(\alpha_i)$.
The dichotomy

Let P, Q be polynomial functors. Write $Q < P$ when $Q(d)$ is a quotient of $P(d)$ where d is maximal with $Q(d) \not\equiv P(d)$.

Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq P$ be a closed subset. Then $X = P$ or there are $Q_1, \ldots, Q_k < P$ and $\alpha_i: Q_i \to P$ such that $X \subseteq \bigcup_i \text{im}(\alpha_i)$.

Examples
- \{matrices of rank $\leq k\} = \{v_1 w_1^T + \cdots + v_k w_k^T \mid v_i, w_i \text{ vectors}\}$
- \{degree d polynomials that are zero on a codim k subspace\} = \{\ell_1 g_1 + \cdots + \ell_k g_k \mid \text{deg}(\ell_i) = 1, \text{deg}(g_i) = d - 1\}
Consequences

- All the previous Examples/Theorems
Consequences

- All the previous Examples/Theorems
- **Theorem** (Draisma)
 Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \ldots$ of closed subsets stabilizes.
Consequences

- All the previous Examples/Theorems
- **Theorem** (Draisma)
 Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \ldots$ of closed subsets stabilizes.
 Proof. Using induction on P:
 Take $Q_1, \ldots, Q_k < P$ and $\alpha_i : Q_i \to P$ such that $X_1 \subseteq \bigcup_i \text{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i. The resulting chains all have to stabilize.
Consequences

- All the previous Examples/Theorems
- **Theorem** (Draisma)
 Every descending chain $P \supsetneq X_1 \supsetneq X_2 \supsetneq \ldots$ of closed subsets stabilizes.
 Proof. Using induction on P:
 Take $Q_1, \ldots, Q_k < P$ and $\alpha_i : Q_i \to P$ such that $X_1 \subseteq \bigcup_i \text{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i. The resulting chains all have to stabilize.
- **Theorem** (B-Draisma-Eggermont-Snowden)
 The map $\alpha \mapsto \overline{\text{im}(\alpha)}$ is a surjection from
 \{polynomial transformations into P\} to
 \{closures of GL_∞-orbits in $\lim_n P(\mathbb{C}^n)$\}.
References

