ED Degrees of Orthogonally Invariant Varieties

Arthur Bik
Mathematical Institute
University of Bern

August 4 2017, SIAM AG17 joint work with Jan Draisma
ED degree of a variety

Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ conditions).
Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ conditions).

Then for a sufficiently general $v \in V$ the positive number

$$\# \left\{ x \in X^{\reg} \left| v - x \perp T_x X \right. \right\}$$

is independent of v and is called the ED degree of X in V.

ED degree of a variety
Example: unit circle

\[x^2 + y^2 = 1 \]
Example: unit circle

\[x^2 + y^2 = 1 \]
Example: unit circle

\[x^2 + y^2 = 1 \]
Example: unit circle

\[x^2 + y^2 = 1 \]
Example: unit circle

\[x^2 + y^2 = 1 \]
Orthogonally invariant matrix varieties

The group $O(n) \times O(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$ (A, B) \mapsto \text{Tr}(AB^T) $$

is invariant.
Orthogonally invariant matrix varieties

The group $O(n) \times O(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$(A, B) \mapsto \text{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.
Orthogonally invariant matrix varieties

The group \(O(n) \times O(m) \) acts on the space \(\mathbb{C}^{n \times m} \) of \(n \times m \) matrices. The bilinear form

\[
(A, B) \mapsto \text{Tr}(AB^T)
\]

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let \(X \) be the closure in \(\mathbb{C}^{n \times m} \) of a stable real subvariety of \(\mathbb{R}^{n \times m} \) with smooth points and let \(X_0 \) be the subset of \(X \) of diagonal matrices. Then the ED degree of \(X \) in \(\mathbb{C}^{n \times m} \) equals the ED degree of \(X_0 \) in the subspace of \(\mathbb{C}^{n \times m} \) of all diagonal matrices.

Observations:
Orthogonally invariant matrix varieties

The group $O(n) \times O(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$(A, B) \mapsto \text{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Observations:

(1) $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)
Orthogonally invariant matrix varieties

The group $O(n) \times O(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$(A, B) \mapsto \text{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Observations:

1. $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)
2. For $D \in \mathbb{C}^{n \times m}$ a sufficiently general diagonal matrix, we have
 $$\mathbb{C}^{n \times m} = \{\text{diagonal matrices}\} \oplus T_D (O(n)DO(m)).$$
Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).
Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).

Theorem (B, Draisma, 2017)

Let $V_0 \subseteq V$ be a subspace and set $X_0 := X \cap V_0$. Assume that GX_0 is dense in X and that

$$V = V_0 \oplus T_{v_0} Gv_0$$

for sufficiently general $v_0 \in V_0$. Then the ED degree of X in V equals the ED degree of X_0 in V_0.
Sketch of proof

Let \(v \in \mathcal{V} \) and \(v_0 \in \mathcal{V}_0 \) be sufficiently general. We want:

\[
\#
\]

Lemma.

\(\mathcal{G}_0 \) is dense in \(\mathcal{V} \).

\(\Rightarrow \) may assume \(v = \tilde{\tilde{v}}_0 \).

Lemma.

\(g \) maps critical points of \(u \) to critical points of \(gu \) one-to-one.

\(\Rightarrow \) may assume \(v = \tilde{v}_0 \).

Lemma.

Critical points of \(v_0 \) for \(X \) and \(X_0 \) are same.
Sketch of proof

Let \(v \in V \) and \(v_0 \in V_0 \) be sufficiently general. We want:

\[
\# \left\{ x \in X_{\text{reg}} \mid v - x \perp T_x X \right\} = \# \left\{ x \in X_{0 \text{reg}}^{\text{reg}} \mid v_0 - x \perp T_x X_0 \right\}
\]
Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\# \left\{ x \in X^{\text{reg}} \mid v - x \perp T_x X \right\} = \# \left\{ x \in X_0^{\text{reg}} \mid v_0 - x \perp T_x X_0 \right\}$$

Lemma. GV_0 is dense in V.
Sketch of proof

Let \(v \in V \) and \(v_0 \in V_0 \) be sufficiently general. We want:

\[
\# \left\{ x \in X^\text{reg} \mid v - x \perp T_x X \right\} = \# \left\{ x \in X_0^\text{reg} \mid v_0 - x \perp T_x X_0 \right\}
\]

Lemma. \(GV_0 \) is dense in \(V \).

\(\leadsto \) may assume \(v = g \cdot \tilde{v}_0 \)
Let \(v \in V \) and \(v_0 \in V_0 \) be sufficiently general. We want:

\[
\# \left\{ x \in X^{\text{reg}} \left| v - x \perp T_xX \right. \right\} = \# \left\{ x \in X_0^{\text{reg}} \left| v_0 - x \perp T_xX_0 \right. \right\}
\]

Lemma. \(GV_0 \) is dense in \(V \).

\[\leadsto\] may assume \(v = g \cdot \tilde{v}_0 \)

Lemma. \(g \) maps critical points of \(u \) to critical points of \(gu \) one-to-one.
Sketch of proof

Let \(v \in V \) and \(v_0 \in V_0 \) be sufficiently general. We want:

\[
\# \left\{ x \in X^{\text{reg}} \mid v - x \perp T_x X \right\} = \# \left\{ x \in X_0^{\text{reg}} \mid v_0 - x \perp T_x X_0 \right\}
\]

Lemma. \(GV_0 \) is dense in \(V \).

\(\leadsto \) may assume \(v = g \cdot \tilde{v}_0 \)

Lemma. \(g \) maps critical points of \(u \) to critical points of \(gu \) one-to-one.

\(\leadsto \) may assume \(v = \tilde{v}_0 \)
Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\# \left\{ x \in X^{\text{reg}} \mid v - x \perp T_xX \right\} = \# \left\{ x \in X_0^{\text{reg}} \mid v_0 - x \perp T_xX_0 \right\}$$

Lemma. GV_0 is dense in V.

\rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

Lemma. g maps critical points of u to critical points of gu one-to-one.

\rightsquigarrow may assume $v = \tilde{v}_0 = v_0$
Let \(v \in V \) and \(v_0 \in V_0 \) be sufficiently general. We want:

\[
\# \left\{ x \in X^{\text{reg}} \left| v - x \perp T_xX \right. \right\} = \# \left\{ x \in X_0^{\text{reg}} \left| v_0 - x \perp T_xX_0 \right. \right\}
\]

Lemma. \(GV_0 \) is dense in \(V \).

\(\rightsquigarrow \) may assume \(v = g \cdot \tilde{v}_0 \)

Lemma. \(g \) maps critical points of \(u \) to critical points of \(gu \) one-to-one.

\(\rightsquigarrow \) may assume \(v = \tilde{v}_0 = v_0 \)

Lemma. Critical points of \(v_0 \) for \(X \) and \(X_0 \) are same.
Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).

Theorem (B, Draisma, 2017)

Let $V_0 \subseteq V$ be a subspace and set $X_0 := X \cap V_0$. Assume that $G X_0$ is dense in X and that

$$V = V_0 \oplus T_{v_0} G v_0$$

*for sufficiently general $v_0 \in V_0$. Then the ED degree of X in V equals the ED degree of X_0 in V_0.***
Let $n > 0$ be an integer. Take $G = \text{GL}_n$ acting on

$$V = \{(A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T\}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$.
Example (Jiri Dadok)

Let $n > 0$ be an integer. Take $G = \text{GL}_n$ acting on

$$V = \{(A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T\}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$. The bilinear form given by

$$((A, B), (C, D)) \mapsto \text{Tr}(AD + BC)$$

is invariant.
Example (Jiri Dadok)

Let $n > 0$ be an integer. Take $G = \text{GL}_n$ acting on

$$V = \{(A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T\}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$. The bilinear form given by

$$((A, B), (C, D)) \mapsto \text{Tr}(AD + BC)$$

is invariant. Take $V_0 = \{(D, D) | D \in \mathbb{C}^{n \times n} \text{ diagonal}\}$.
Example (Jiri Dadok)

Let \(n > 0 \) be an integer. Take \(G = \text{GL}_n \) acting on

\[
V = \{(A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T\}
\]

by \(g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1}) \). The bilinear form given by

\[
((A, B), (C, D)) \mapsto \text{Tr}(AD + BC)
\]

is invariant. Take \(V_0 = \{(D, D) | D \in \mathbb{C}^{n \times n} \text{ diagonal}\} \). Then

\[
V = V_0 \oplus T_{(D, D)}G(D, D)
\]

for all invertible \(D = \text{diag}(d_1, \ldots, d_n) \) with \(d_i^2 \neq d_j^2 \) for \(i \neq j \).
Let G be reductive. Let K be a maximal compact subgroup of G and let V_R a real representation of K whose complexification is V.

Theorem (B, Draisma, 2017)

The following are equivalent:

1. V has a subspace V_0 such that V_0 is T-invariant for sufficiently general $v_0 \in V_0$.

2. V is a stable polar representation.

3. V_R is a polar representation.

Dadok classified irreducible polar representations of compact Lie groups.
Let G be reductive. Let K be a maximal compact subgroup of G and let V_R a real representation of K whose complexification is V.

Theorem (B, Draisma, 2017)

The following are equivalent:

1. V has a subspace V_0 such that

 $$V = V_0 \oplus T_{v_0} G v_0$$

 for sufficiently general $v_0 \in V_0$.

2. V is a stable polar representation.

3. V_R is a polar representation.
Let G be reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Theorem (B, Draisma, 2017)

The following are equivalent:

1. V has a subspace V_0 such that

 \[V = V_0 \oplus T_{v_0}Gv_0 \]

 for sufficiently general $v_0 \in V_0$.

2. V is a stable polar representation.

3. $V_{\mathbb{R}}$ is a polar representation.

Dadok classified irreducible polar representations of compact Lie groups.
Polar representations

Definition
A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{ x \in V | T_x G x \subseteq T_v G v \}$$

has dimension $\dim(V/G)$.

Definition
A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in p T_v G v$, we have $T_u K u \subseteq T_v G v$.

Polar representations

Definition
A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{ x \in V | T_x G x \subseteq T_v G v \}$$

has dimension $\dim(V/G)$.

Definition
A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in (T_v K v)^\perp$ we have $T_u K u \subseteq T_v K v$.
Classification

Complexification of Dadok’s list:

<table>
<thead>
<tr>
<th>G</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>G semisimple</td>
<td>g</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>\mathbb{C}^n</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$\text{Sym}^2(\mathbb{C}^n)$</td>
</tr>
<tr>
<td>$O(n) \times O(m)$</td>
<td>$\mathbb{C}^{n \times m}$</td>
</tr>
<tr>
<td>$\text{Sp}(n)$</td>
<td>$\Lambda^2(\mathbb{C}^{2n})$</td>
</tr>
<tr>
<td>$\text{Sp}(n) \times \text{Sp}(m)$</td>
<td>$\mathbb{C}^{2n \times 2m}$</td>
</tr>
<tr>
<td>$\text{SL}(V)$</td>
<td>$V \oplus V^*$</td>
</tr>
<tr>
<td>$\text{GL}(V)$</td>
<td>$\text{Sym}^2(V) \oplus \text{Sym}^2(V)^*$</td>
</tr>
<tr>
<td>$\text{GL}(V)$</td>
<td>$\Lambda^2(V) \oplus \Lambda^2(V)^*$</td>
</tr>
<tr>
<td>$\text{Sp}(n)$</td>
<td>$\mathbb{C}^{2n} \oplus (\mathbb{C}^{2n})^*$</td>
</tr>
<tr>
<td>$\text{GL}_n \times \text{GL}_m$</td>
<td>$\mathbb{C}^{n \times m} \oplus (\mathbb{C}^{n \times m})^*$</td>
</tr>
<tr>
<td>SL_2</td>
<td>$\text{Sym}^4(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Thank you for your attention!
References

