Counting critical rank-one approximations to tensors

Jan Draisma (j.w.w. Emil Horobeţ)
TU Eindhoven
Tensors of bounded rank

Setting

V_1, \ldots, V_p vector spaces over K, $\dim V_i =: n_i$

$V := V_1 \otimes \cdots \otimes V_p$ has dimension $n_1 \cdots n_p$.

Each $u \in V$ is of the form $\sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{ip}$.

Definition

The minimal k in any such expression is the rank of u.

The border rank is the minimal k such that u lies in the Zariski closure of $\{v \in V \mid \text{rk } v \leq k\}$ (assume K infinite).

Dimension

Tensors of border rank $\leq k$ form a variety of dimension $\leq k \cdot [1 + \sum_{i=1}^{p} (n_i - 1)]$, which is $\ll n_1 \cdots n_p$ for small k.
Low-rank approximation

Setting
Assuming $K = \mathbb{R}$, equip each V_i with a positive definite inner product $(\cdot | \cdot)_i$. Equip V with the inner product determined by $(u_1 \otimes \cdots \otimes u_p | v_1 \otimes \cdots \otimes v_p) := \prod_i (u_i | v_i)_i$.

Inspiring problem
Given $u \in V$ and $k \in \mathbb{N}$, find $x \in V$ of rank $\leq k$ that minimises $d_u(x) := ||u - x||^2$.

Related problem
For (sufficiently general) $u \in V$, count the critical points of d_u on the smooth part of the set $\{v \in V \mid \text{rk} \ v \leq k\}$.

My talk: $k = 1$.
Rank-one approximation for matrices

Setting

$X := \{v_1 \otimes \cdots \otimes v_p\} \setminus \{0\} \subseteq V$ is the manifold of pure tensors. Given $u \in V$, we count critical points of d_u on X.

Note

Count doesn’t change when acting with $O(V_1) \times \cdots \times O(V_p)$.

Case $p = 2, n_1 \leq n_2$ (Eckart-Young Theorem)

$\exists g_i \in O(V_i), i = 1, 2$ such that $(g_1 \otimes g_2)u = \sum_{i=1}^{n_1} c_i \cdot e_i \otimes f_i$

where e_1, \ldots, e_{n_1} orthonormal in V_1 and f_1, \ldots, f_{n_1} orthonormal in V_2 and $c_1 \geq \ldots \geq c_{n_1} \geq 0$ (singular values).

The critical points are $(g_1^{-1}, g_2^{-1})c_i \cdot e_i \otimes f_i$ for $i = 1, \ldots, n_1$; there are n_1 of these.
Main result: ordinary tensors

Fact
For $p \geq 3$ the number of critical points of d_u on X typically jumps as u crosses a hypersurface; we compute an average.

Theorem (D-Horobeț)
Draw u uniformly from the unit sphere in V centered at 0. Then the expected # of critical points of d_u equals

$$\frac{(2\pi)^{p/2}}{2^{n/2}} \frac{1}{\prod_{i=1}^{p} \Gamma\left(\frac{n_i}{2}\right)} \mathbb{E}(|\det C|)$$

where $n := n_1 + \cdots + n_p$ and where C is a symmetric random $(n - p) \times (n - p)$-matrix with certain structural zeroes.
Main result, continued

Structure of C

\[
C = \begin{bmatrix}
 w_0 I_{n_1-1} & C_{1,2} & \cdots & C_{1,p} \\
 C_{1,2}^T & w_0 I_{n_2-1} & \cdots & C_{2,p} \\
 \vdots & \vdots & \ddots & \vdots \\
 C_{1,p}^T & C_{2,p}^T & \cdots & w_0 I_{n_p-1}
\end{bmatrix}
\]

where C_{ij} is $(n_i - 1) \times (n_j - 1)$, and where w_0 and the entries of all C_{ij} are independent and $\sim \mathcal{N}(0,1)$.

Sanity check: $p = 2, n_1 = n_2 = 2$

\[
C = \begin{bmatrix}
 w_0 & w_{12} \\
 w_{12} & w_0
\end{bmatrix}, \quad |\det C| = |w_0^2 - w_{12}^2|, \quad \mathbb{E}(|\det C|) = \frac{4}{\pi}
\]

\Rightarrow get $\frac{(2\pi)^{1/2}}{2^2} \cdot 1 \cdot \frac{4}{\pi} = 2$, as given by the Eckart-Young theorem.
Euclidean distance degree

More general problem
Given any real algebraic variety X in a Euclidean space V, and given $u \in V$, count the critical points of $d_u(x) := ||u - x||^2$ on the manifold X_{reg}, i.e., count the x where $u - x \perp T_xX$.

Definition (D-H-Ottaviani-Sturmfels-Thomas)
Complexify $(\cdot | \cdot)$ to a symmetric bilinear form on $V_\mathbb{C}$. Then for general $u \in V_\mathbb{C}$ the number of smooth points $x \in X_\mathbb{C}$ with $u - x \perp T_xX_\mathbb{C}$ is a constant called the ED degree of X (or $X_\mathbb{C}$).

The average ED degree of X w.r.t. a probability measure on V is the expected number of critical points of d_u for random $u \in V$. This is a real, rather than complex count.
ED degree for rank-one tensors

Setting
Complexify (.|.) from before to a symmetric bilinear form on $V_{\mathbb{C}} = (V_1 \otimes \cdots \otimes V_p)_{\mathbb{C}}$; $X_{\mathbb{C}}$ consists of complex pure tensors.

Theorem (Friedland-Ottaviani)
EDdegree(X) = coefficient of $s_1^{n_1-1} \cdots s_p^{n_p-1}$ in $\prod_{i=1}^{p} \frac{\hat{s}_i^{n_i} - s_i^{n_i}}{\hat{s}_i - s_i}$, where $\hat{s}_i = s_1 + \cdots + s_{i-1} + s_{i+1} + \cdots + s_p$.

Sanity check: $p = 2, n_1 \leq n_2$
\implies We get the coefficient of $s_1^{n_1-1}s_2^{n_2-1}$ in
\[
\frac{s_2^{n_1} - s_1^{n_1}}{s_2 - s_1} \cdot \frac{s_2^{n_2} - s_2^{n_2}}{s_1 - s_2} = (s_2^{n_1-1} + \cdots + s_1^{n_1-1}) \cdot (s_1^{n_2-1} + \cdots + s_2^{n_2-1})
\]
which equals n_1 as given by the Eckart-Young theorem.
(Average) ED degrees for rank-one tensors

<table>
<thead>
<tr>
<th>Tensor format</th>
<th>average ED degree ($/\mathbb{R}$)</th>
<th>ED degree ($/\mathbb{C}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_1 \times n_2$</td>
<td>$\min(n_1, n_2)$</td>
<td>$\min(n_1, n_2)$</td>
</tr>
<tr>
<td>$2^3 = 2 \times 2 \times 2$</td>
<td>4.287</td>
<td>6</td>
</tr>
<tr>
<td>2^4</td>
<td>11.06</td>
<td>24</td>
</tr>
<tr>
<td>2^5</td>
<td>31.56</td>
<td>120</td>
</tr>
<tr>
<td>2^6</td>
<td>98.82</td>
<td>720</td>
</tr>
<tr>
<td>2^7</td>
<td>333.9</td>
<td>5040</td>
</tr>
<tr>
<td>2^8</td>
<td>$1.206 \cdot 10^3$</td>
<td>40320</td>
</tr>
<tr>
<td>$2 \times 2 \times 3$</td>
<td>5.604</td>
<td>8</td>
</tr>
<tr>
<td>$2 \times 2 \times 4$</td>
<td>5.556</td>
<td>8</td>
</tr>
<tr>
<td>$2 \times 2 \times 5$</td>
<td>5.536</td>
<td>8</td>
</tr>
<tr>
<td>$2 \times 3 \times 3$</td>
<td>8.817</td>
<td>15</td>
</tr>
<tr>
<td>$2 \times 3 \times 4$</td>
<td>10.39</td>
<td>18</td>
</tr>
<tr>
<td>$2 \times 3 \times 5$</td>
<td>10.28</td>
<td>18</td>
</tr>
<tr>
<td>$3 \times 3 \times 3$</td>
<td>16.03</td>
<td>37</td>
</tr>
<tr>
<td>$3 \times 3 \times 4$</td>
<td>21.28</td>
<td>55</td>
</tr>
</tbody>
</table>
The ED correspondence

General setting, \mathbb{R} or \mathbb{C} (D-H-O-S-T)
\[\mathcal{E}_X := \{(x, u) \mid x \in X_{\text{reg}} \text{ critical for } d_u\} \subseteq X \times V \] is called the ED correspondence of X.

Observation
\[\pi_1 : \mathcal{E}_X \to X \] is an affine vector bundle over X_{reg} of rank $\text{codim} X$.
\[\pi_2 : \mathcal{E}_X \to V \] has fibres whose cardinalities we try to count.

Cones
Assume X is closed under scalar multiplication, so $\mathbb{P}X \subseteq \mathbb{P}V$ is a projective variety. Let $\mathbb{P}\mathcal{E}_X$ be the image of \mathcal{E}_X in $\mathbb{P}X \times V$. Its fibre over $[x] \in \mathbb{P}X$ with $(x|x) \neq 0$ equals $\langle x \rangle + (T_x X)^\perp$.

\leadsto the projective ED correspondence $\mathbb{P}\mathcal{E}_X$ is a vector bundle over $\mathbb{P}X_{\text{reg}}$ of rank $\text{codim} X + 1$ away from $Q := \{v \mid (v|v) = 0\}$.
Towards vector bundle methods

$u \in V$ gives a section of the quotient bundle $(\mathbb{P}X \times V)/\mathbb{P}\mathcal{E}_X$, and the ED degree counts the zeroes of this section (but there may be problems at Q and outside X_{reg}).

Zeroes of a general sections of a vector bundle $\mathcal{E} \to \mathbb{P}X$ of rank $\dim \mathbb{P}X$ are counted by the degree of the top Chern class of \mathcal{E}. This class lives in the Chow ring of $\mathbb{P}X$.

So control over the Chow ring of $\mathbb{P}X$ and the behaviour at singular points and at Q can yield the ED degree.

For $X = \{\text{pure tensors}\}$, $\mathbb{P}X = \text{Seg}(\mathbb{P}^{n_1-1} \times \cdots \times \mathbb{P}^{n_p-1})$. The Chow ring is $\mathbb{Z}[s_1, \ldots, s_p]/(s_1^{n_1}, \ldots, s_p^{n_p})$.
Proof sketch of the Friedland-Ottaviani formula

\[\text{EDdegree}(X) = \text{coefficient of } s_1^{n_1-1} \cdots s_p^{n_p-1} \text{ in } \prod_{i=1}^{p} \frac{\hat{s}_i^{n_i} - s_i^{n_i}}{\hat{s}_i - s_i}, \]

where \(\hat{s}_i = s_1 + \cdots + s_{i-1} + s_{i+1} + \cdots + s_p \).

Tangent space

\[x = v_1 \otimes \cdots \otimes v_p \leadsto T_x X = \sum_{j=1}^{p} v_1 \otimes \cdots \otimes V_j \otimes \cdots \otimes v_p. \]

Proof sketch

\([x], u) \in \mathbb{P} \mathcal{E}_X \iff \exists c \forall i : u - cx \perp v_1 \otimes \cdots \otimes V_i \otimes \cdots \otimes v_p
\iff \exists c \forall i : u - cx \perp x \text{ and } u \perp v_1 \otimes \cdots \otimes v_i^\perp \otimes \cdots \otimes v_p
\iff u \perp v_1 \otimes \cdots \otimes v_i^\perp \otimes \cdots \otimes v_p \quad \text{(if } (x|x) \neq 0)\]

Define \(\mathcal{E}_i : \text{bundle on } \mathbb{P} X \text{ with fibre } (v_1 \otimes \cdots \otimes v_i^\perp \otimes \cdots \otimes v_p)^* \)

The tensor \(u \) gives a section of the bundle \(\bigoplus_i \mathcal{E}_i \), whose top Chern class has degree = \text{coefficient}. \(\square \)
Recall (now over \mathbb{R})

$\pi_1 : \mathcal{E}_X \to X$ is an affine vector bundle $/X_{\text{reg}}$ of rank $\text{codim} X$.

$\pi_2 : \mathcal{E}_X \to V$ has fibres whose cardinalities we try to count.

Assume that the probability distribution on V is given by a density f, and that we have a generically one-to-one map φ from $\mathbb{R}^{\dim V}$ to \mathcal{E}_X. Then the average ED degree of X equals

$$\int_V \#|\pi_2^{-1}(u)| \cdot f(u)du = \int_{\mathbb{R}^{\dim V}} |J(\pi_2 \circ f)(t)| \cdot f(\pi_2(\varphi(t)))dt.$$

For rational varieties X we can take φ to be birational. If X is a cone, we can also work with $\mathbb{P}\mathcal{E}_X$.

Average ED degrees by double counting
Proof sketch of the D-Horobeț formula

Fix a norm-1 vector $e_i \in V_i$ for $i = 1, \ldots, p$.

Set $W := (\bigoplus_{i=1}^{p} e_1 \otimes \cdots \otimes e_i^\perp \otimes \cdots \otimes e_p)^\perp \subseteq V$, the fibre over $[e_1 \otimes \cdots \otimes e_p] \in \mathbb{P}X$ in $\mathbb{P}E_X$.

Define the birational map $\psi : e_1^\perp \times \cdots \times e_p^\perp \rightarrow \mathbb{P}X$ by $(v_1, \ldots, v_p) \mapsto [(e_1 + v_1) \otimes \cdots \otimes (e_p + v_p)]$. By symmetry, the π_2-fibre over $\psi(v_1, \ldots, v_p)$ equals gW, where $g \in \prod_i O(V_i)$ is any element such that g_i maps $[e_i]$ into $[e_i + v_i]$.

Choose $g_i := \left(I - e_ie_i^T - \frac{v_i}{\|v_i\|} \frac{v_i^T}{\|v_i\|} \right) + \left(\frac{e_i + v_i}{\sqrt{1 + \|v_i\|^2}} \frac{e_i^T}{\|v_i\|} + \frac{v_i - \|v_i\|^2 e_i}{\|v_i\| \sqrt{1 + \|v_i\|^2}} \frac{v_i^T}{\|v_i\|} \right)$

and apply double counting to

$\psi : \prod_i (e_i)^\perp \times W \rightarrow \mathbb{P}E_X, (v_1, \ldots, v_p) \mapsto (\varphi(v_1, \ldots, v_p), gw)$. □
Further result: symmetric tensors

Setting

Equip $V := \text{Sym}^p \mathbb{R}^n$ with the positive inner product where $(v_1^p|v_2^p) = (v_1|v_2)^p$ (the Bombieri inner product). Now we approximate $u \in V$ by an element of $X := \{ \pm v^p \mid v \in \mathbb{R}^n \setminus \{0\} \}$.

Theorem (D-Horobeț)

Draw u from the uniform distribution on the unit sphere in V centered at 0. Then $\mathbb{E}(\#\text{critical points of } d_u \text{ on } X)$ equals

$$
\frac{1}{2^{(n^2+3n-2)/4}} \frac{1}{\prod_{i=1}^n \Gamma(i/2)} \int_{-\infty}^{\infty} \int_{\lambda_2 \leq \ldots \leq \lambda_n} \left(\prod_{i=2}^n |\sqrt{p}w_0 - \sqrt{p-1}\lambda_i| \right) \cdot \\
\left(\prod_{i<j}(\lambda_j - \lambda_i) \right) e^{-w_0^2/2 - \sum_{i=2}^n \frac{\lambda_i^2}{4}} \, dw_0 \, d\lambda_2 \cdots d\lambda_n
$$
ED degrees for symmetric rank-1 tensors

ED degrees (right) and average ED degrees (left)

<table>
<thead>
<tr>
<th>$p \backslash n$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$\sqrt{7}$</td>
<td>$1 + 4 \cdot \frac{2}{7} \cdot \sqrt{7} \cdot 2$</td>
<td>9.3951...</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$\sqrt{10}$</td>
<td>$1 + 4 \cdot \frac{3}{10} \cdot \sqrt{10} \cdot 3$</td>
<td>16.254...</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>$\sqrt{13}$</td>
<td>$1 + 4 \cdot \frac{4}{13} \cdot \sqrt{13} \cdot 4$</td>
<td>24.300...</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>$\sqrt{16}$</td>
<td>$1 + 4 \cdot \frac{5}{16} \cdot \sqrt{16} \cdot 5$</td>
<td>33.374...</td>
<td>1</td>
<td>6</td>
<td>31</td>
<td>156</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>$\sqrt{19}$</td>
<td>$1 + 4 \cdot \frac{6}{19} \cdot \sqrt{19} \cdot 6$</td>
<td>43.370...</td>
<td>1</td>
<td>7</td>
<td>43</td>
<td>259</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>$\sqrt{22}$</td>
<td>$1 + 4 \cdot \frac{7}{22} \cdot \sqrt{22} \cdot 7$</td>
<td>54.21...</td>
<td>1</td>
<td>8</td>
<td>57</td>
<td>400</td>
</tr>
</tbody>
</table>

Theorem (Cartwright-Sturmfels)
The ED degree of $X \subseteq S^p V$ is $1 + (p - 1) + \cdots + (p - 1)^{n-1}$.
Further remarks and problems

- Relation to singular vector tuples and eigenvectors. (Lim)
- Other inner products on V?
- Closed form expression for the average ED degree for sym case?
- What is the expected number of local minima of d_u?
- Describe hypersurface where $|\pi^{-1}_2(u)|$ jumps (the ED discriminant).
- Find all typical values of $|\pi^{-1}_2(u)|$ (over \mathbb{R}).
- Give a geometric proof for “stabilisation” when $n_p - 1 \geq \sum_{i=1}^{p-1} (n_i - 1)$.
- Can knowledge of (average) ED degrees be used in algorithms?
- How about rank two?
Further remarks and problems

- Relation to singular vector tuples and eigenvectors. *(Lim)*
- Other inner products on V?
- Closed form expression for the average ED degree for sym case?
- What is the expected number of local minima of d_u?
- Describe hypersurface where $|\pi_2^{-1}(u)|$ jumps (the ED discriminant).
- Find all typical values of $|\pi_2^{-1}(u)|$ (over \mathbb{R}).
- Give a geometric proof for “stabilisation” when $n_p - 1 \geq \sum_{i=1}^{p-1} (n_i - 1)$.
- Can knowledge of (average) ED degrees be used in algorithms?
- How about rank two?

References
- Jan Draisma and Emil Horobeț: *The average number of critical rank-one approximations to a tensor*, arxiv:1408.3507
Further remarks and problems

• Relation to singular vector tuples and eigenvectors. (Lim)
• Other inner products on V?
• Closed form expression for the average ED degree for sym case?
• What is the expected number of \textit{local minima} of d_u?
• Describe hypersurface where $|\pi_2^{-1}(u)|$ jumps (the ED discriminant).
• Find all \textit{typical} values of $|\pi_2^{-1}(u)|$ (over \mathbb{R}).
• Give a \textit{geometric proof} for “stabilisation” when $n_p - 1 \geq \sum_{i=1}^{p-1} (n_i - 1)$.
• Can knowledge of (average) ED degrees be used in \textit{algorithms}?
• How about rank \textit{two}?

References

• Jan Draisma and Emil Horobeț: \textit{The average number of critical rank-one approximations to a tensor}, \texttt{arxiv:1408.3507}

Thank you!