Matroids: algebraicity, duality, and valuations

Jan Draisma
Universität Bern and Eindhoven University of Technology

Berlin, June 2019

Algebraic matroids and Frobenius flocks, Bollen-D-Pendavingh
Matroids over one-dimensional groups, Bollen-Cartwright-D
Recipe: Given an $n \times d$-matrix over a field, remember only which subsets of the rows are independent.
Recipe: Given an $n \times d$-matrix over a field, remember only which subsets of the rows are independent.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]
From matrix to matroid I

Recipe: Given an $n \times d$-matrix over a field, remember only which subsets of the rows are independent.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

(char ≠ 2)

(char = 2)

(non-)Fano matroid
Recipe: Given an \(n \times d \)-matrix over a field, remember only which subsets of the rows are independent.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

This collection \(\mathcal{I} \subseteq 2^{[n]} \) is nonempty, downward closed, and satisfies \(\forall I, J \in \mathcal{I} : |J| > |I| \Rightarrow \exists j \in J \setminus I : I + j \in \mathcal{I} \); these are the defining properties of a matroid on \([n]\).
Well-understood breeds of matroids

Definition: A matroid on \([n]\) is a nonempty, downward closed collection \(\mathcal{I} \subseteq 2^{[n]}\) s.t. \(\forall I, J \in \mathcal{I} : |J| > |I| \Rightarrow \exists j \in J \setminus I : I + j \in \mathcal{I}\). The maximal independent sets are called the bases.
Well-understood breeds of matroids

Definition: A matroid on $[n]$ is a nonempty, downward closed collection $\mathcal{I} \subseteq 2^{[n]}$ s.t. $\forall I, J \in \mathcal{I}: |J| > |I| \Rightarrow \exists j \in J \setminus I : I + j \in \mathcal{I}$. The maximal *independent sets* are called the *bases*.

Linear matroids: from a matrix over a field.
Well-understood breeds of matroids

Definition: A matroid on \([n]\) is a nonempty, downward closed collection \(\mathcal{I} \subseteq 2^{[n]}\) s.t. \(\forall I, J \in \mathcal{I} : |J| > |I| \Rightarrow \exists j \in J \setminus I : I + j \in \mathcal{I}\). The maximal independent sets are called the **bases**.

Linear matroids: from a matrix over a field.

Graphical matroids: edge set \([n]\), independent = contains no cycle.

A basis:

The greedy algorithm for minimal-cost spanning tree carries over precisely to matroids.
Well-understood breeds of matroids

Definition: A *matroid* on \([n]\) is a nonempty, downward closed collection \(\mathcal{I} \subseteq 2^{[n]}\) s.t. \(\forall I, J \in \mathcal{I} : |J| > |I| \implies \exists j \in J \setminus I : I + j \in \mathcal{I}\). The maximal *independent sets* are called the *bases*.

Linear matroids: from a matrix over a field.

Graphical matroids: edge set \([n]\), independent = contains no cycle.

\[
\begin{pmatrix}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}
\]

The greedy algorithm for minimal-cost spanning tree carries over precisely to matroids.

Every graphical matroid is linear (over every field).
Definition: Let $L \supseteq K$ be a field extension and $x_1, \ldots, x_n \in L$. Set $\mathcal{I} := \{I \subseteq [n] : (x_i)_{i \in I} \text{ algebraically independent over } K\}$. Such a matroid is called algebraic (over K).
The ugly ducks among matroids

Definition: Let $L \supseteq K$ be a field extension and $x_1, \ldots, x_n \in L$. Set $\mathcal{I} := \{I \subseteq [n] : (x_i)_{i \in I} \text{ algebraically independent over } K\}$. Such a matroid is called *algebraic* (over K).

Every linear matroid is algebraic:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

\[
x_1 = t_1 \\
x_2 = t_2 \\
x_3 = t_3 \\
x_4 = t_2 + t_3 \\
x_5 = t_1 + t_3 \\
x_6 = t_1 + t_2 \\
x_7 = t_1 + t_2 + t_3
\]

$L = K(t_1, t_2, t_3)$
Why study algebraic matroids?

Generic completion

K algebraically closed

$X \subseteq K^n$ irreducible closed subvariety

$\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$
Why study algebraic matroids?

Generic completion

K algebraically closed

$X \subseteq K^n$ irreducible closed subvariety

$\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$

\[x_1 = x_2^2 + x_3^2 - 1 = 0\]

$\mathcal{I} = \{\emptyset, 2, 3\}$
Why study algebraic matroids?

Generic completion

K algebraically closed

$X \subseteq K^n$ irreducible closed subvariety

$I := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \hat{p} \in X\}$

I is an algebraic matroid with $L = K(X)$; and every algebraic matroid arises in this manner.

$x_1 = x_2^2 + x_3^2 - 1 = 0$

$I = \{\emptyset, 2, 3\}$
Why study algebraic matroids?

Generic completion

K algebraically closed

X ⊆ *K*ⁿ irreducible closed subvariety

\[\mathcal{I} := \{ I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X \} \]

\[x_1 = x_2^2 + x_3^2 - 1 = 0 \]

\[\mathcal{I} = \{ \emptyset, 2, 3 \} \]

\mathcal{I}\text{ is an algebraic matroid with } L = K(X); \text{ and every algebraic matroid arises in this manner.}

Problem: Given *X* and *I* ⊆ [n], decide whether *I* ∈ *I*.

Can be solved by Buchberger’s algorithm for elimination, but this is not efficient.
Case study: generic low-rank matrix completion

\[[n] = [\ell] \times [m], \quad \ell, m \geq k, \quad K^{\ell \times m} \supseteq X := \{ A | \text{rk}(A) \leq k \} \]

Generic rank-\(k\) completion problem: On input \(I \subseteq [\ell] \times [m]\), decide whether a generic choice of \((a_{ij})_{(i,j) \in I}\) can be completed to a matrix of rank \(\leq k\).
Case study: generic low-rank matrix completion

\([n] = [\ell] \times [m], \quad \ell, m \geq k, \quad K^{\ell \times m} \supseteq X := \{A | \text{rk} (A) \leq k\}\)

Generic rank-\(k\) completion problem: On input \(I \subseteq [\ell] \times [m]\), decide whether a generic choice of \((a_{ij})_{(i,j) \in I}\) can be completed to a matrix of rank \(\leq k\).

Rank \(k = 1\): yes if and only if the bipartite graph with edges \(I\) has no cycles \(\iff I\) is the graphical matroid of \(K_{\ell,m}\); independence is easy.
[n] = [ℓ] × [m], ℓ, m ≥ k, K\(\ell \times m \) ⊇ X := \{A | \text{rk}(A) ≤ k\}

Generic rank-\(k \) completion problem: On input \(I ⊆ [ℓ] \times [m] \), decide whether a generic choice of \((a_{ij})_{(i,j) ∈ I}\) can be completed to a matrix of rank \(\leq k \).

Rank \(k = 1 \): yes iff the bipartite graph with edges \(I \) has no cycles \(⇒ I \) is the graphical matroid of \(K_{ℓ,m} \); independence is easy.

Rank \(k = 2 \), Bernstein: yes iff that graph admits an acyclic orientation with no alternating cycles. Krone proves this theorem using tropical secant varieties. Polynomial time??
Case study: generic low-rank matrix completion

\[[n] = [\ell] \times [m], \quad \ell, m \geq k, \quad K^{\ell \times m} \supseteq X := \{ A \mid \text{rk}(A) \leq k \} \]

Generic rank-\(k\) completion problem: On input \(I \subseteq [\ell] \times [m]\), decide whether a generic choice of \((a_{ij})_{(i,j) \in I}\) can be completed to a matrix of rank \(\leq k\).

Rank \(k = 1\): yes iff the bipartite graph with edges \(I\) has no cycles \(\sim\) \(I\) is the graphical matroid of \(K_{\ell,m}\); independence is easy.

Rank \(k = 2\), Bernstein: yes iff that graph admits an acyclic orientation with no alternating cycles. Krone proves this theorem using tropical secant varieties. Polynomial time??

Open problem: is there a poly time deterministic algorithm that on input \(S \subseteq \mathbb{Q}^n\) decides if \(S\) can be partitioned by a hyperplane into two linearly independent sets?
Linearising algebraic matroids

$X \subseteq K^n$ irreducible, and $q \in X$ smooth \leadsto the tangent space T_qX defines a matroid on $[n]$ with $\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)$.
Linearising algebraic matroids

$X \subseteq K^n$ irreducible, and $q \in X$ smooth \leadsto the tangent space T_qX defines a matroid on $[n]$ with $\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)$.

$x_1 = x_2^2 + x_3^2 - 1 = 0$

$\mathcal{I} = \{\emptyset, 2, 3\}$
Linearising algebraic matroids

\(X \subseteq K^n\) irreducible, and \(q \in X\) smooth \(\leadsto\) the tangent space \(T_qX\) defines a matroid on \([n]\) with \(\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)\).

\[x_1 = x_2^2 + x_3^2 - 1 = 0\]
\[\mathcal{I} = \{\emptyset, 2, 3\}\]
\[\mathcal{I} = \{\emptyset, 2, 3\}\]
Linearising algebraic matroids

X ⫋ \(K^n \) irreducible, and \(q \in X \) smooth \(\rightsquigarrow \) the tangent space \(T_qX \) defines a matroid on \([n]\) with \(\mathcal{I}(T_qX) \subseteq \mathcal{I}(X) \).

\[
x_1 = x_2^2 + x_3^2 - 1 = 0
\]

\[
\mathcal{I} = \{\emptyset, 2, 3\}
\]

\[
\mathcal{I} = \{\emptyset, 3\}
\]
Linearising algebraic matroids

$X \subseteq K^n$ irreducible, and $q \in X$ smooth \leadsto the tangent space T_qX defines a matroid on $[n]$ with $\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)$.

If $\text{char} K = 0$, then for $q \in X$ sufficiently general, $\mathcal{I}(T_qX) = \mathcal{I}(X)$; not true for $\text{char} K = p > 0$.

$x_1 = x_2^2 + x_3^2 - 1 = 0$

$\mathcal{I} = \{\emptyset, 2, 3\}$

$\mathcal{I} = \{\emptyset, 2, 3\}$

$\mathcal{I} = \{\emptyset, 3\}$
Linearising algebraic matroids

\[X \subseteq K^n \text{ irreducible, and } q \in X \text{ smooth} \Rightarrow \text{the tangent space } T_qX \text{ defines a matroid on } [n] \text{ with } \mathcal{I}(T_qX) \subseteq \mathcal{I}(X). \]

If \(\text{char} K = 0 \), then for \(q \in X \) sufficiently general, \(\mathcal{I}(T_qX) = \mathcal{I}(X) \); not true for \(\text{char} K = p > 0 \).

Consequences
• Algebraic matroids in characteristic 0 are linear (Ingleton)
• Sometimes there is an efficient probabilistic algorithm for the generic completion problem: sample \(q \in X \), compute \(T_qX \), and use Gaussian elimination to check \(I \in \mathcal{I}(T_qX) \).
Duality

Definition: If \mathcal{I} is a matroid on $[n]$, then $\mathcal{I}^\perp := \{J \subseteq [n] : J \text{ is disjoint from some basis of } \mathcal{I}\}$ is the *dual* matroid.
Duality

Definition: If \(I \) is a matroid on \([n]\), then \(I^\perp := \{J \subseteq [n] : J \text{ is disjoint from some basis of } I\} \) is the *dual* matroid.

The dual of a *linear* matroid is linear:

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\quad \xrightarrow{\text{char} \neq 2} \quad A^\perp = \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
0 & 0 & 0 & -2
\end{bmatrix}
\]
Definition: If \(I \) is a matroid on \([n]\), then \(I^\perp := \{ J \subseteq [n] : J \) is disjoint from some basis of \(I \}\) is the *dual* matroid.

The dual of a *linear* matroid is linear:

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

\[
A^\perp = \begin{bmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
1 & -1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & -2
\end{bmatrix}
\]

The dual of a *planar graph* matroid is graphical:
Main challenges on algebraic matroids

Testing algebraicity: given a matroid, how does one decide if it is algebraic?

For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger’s algorithm can do this.
Main challenges on algebraic matroids

Testing algebraicity: given a matroid, how does one decide if it is algebraic?

For linearity, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger’s algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?
Main challenges on algebraic matroids

Testing algebraicity: given a matroid, how does one decide if it is algebraic?

For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger’s algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they’re linear!
Main challenges on algebraic matroids

Testing algebraicity: given a matroid, how does one decide if it is algebraic?

For linearity, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger’s algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they’re linear!

Example (Alfter-Hochstättler): the tic-tac-toe matroid on $[3] \times [3]$ has as bases all quintuples except all 4 L’s and all 4 T’s. Is it algebraic?? Its dual is not.
K a field, $v : K \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}$, $v(ab) = v(a) + v(b)$, and $v(a + b) \geq \min\{v(a), v(b)\}$.
K a field, $\nu : K \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $
abla^{-1}(\infty) = \{0\}$, $\nu(ab) = \nu(a) + \nu(b)$, and $\nu(a + b) \geq \min\{\nu(a), \nu(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$-matrix of rank d over K, remember the valuations of the $d \times d$-subdeterminants.
From matrix to matroid (valuation) II

K a field, $v : K \rightarrow \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}$, $v(ab) = v(a) + v(b)$, and $v(a + b) \geq \min\{v(a), v(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$-matrix of rank d over K, remember the valuations of the $d \times d$-subdeterminants.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 8 \end{bmatrix}$$

$K = \mathbb{Q}$, v = 2-adic

$$\begin{align*}
\mu(\{1,2\}) &= \mu(\{1,3\}) \\
&= \mu(\{2,3\}) = \mu(\{2,4\}) \\
&= \mu(\{3,4\}) = 0 \\
\mu(\{1,4\}) &= 3
\end{align*}$$
From matrix to matroid (valuation) II

K a field, $v : K \to \bar{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}$, $v(ab) = v(a) + v(b)$, and $v(a + b) \geq \min\{v(a), v(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$-matrix of rank d over K, remember the valuations of the $d \times d$-subdeterminants.

$$
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 8
\end{bmatrix}
$$

$K = \mathbb{Q}$, $v = 2$-adic

$$
\mu(\{1, 2\}) = \mu(\{1, 3\}) = \mu(\{2, 3\}) = \mu(\{2, 4\}) = \mu(\{3, 4\}) = 0
$$

$\mu(\{1, 4\}) = 3$

This matroid valuation $\mu : \binom{[n]}{d} \to \bar{\mathbb{R}}$ satisfies: $\mu \neq \infty$ and

$$
\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \mu(B) + \mu(B') \geq \mu(B - i + j) + \mu(B' + i - j).
$$

Matroid valuations play the role of linear spaces in trop geometry.
Definition (Bollen-D-Pendavingh, Cartwright)

Let K be an algebraically closed field of characteristic $p > 0$, and let $L = K(x_1, \ldots, x_n) \supseteq K$ be a field extension of transcendence degree d. Define a map $\mu : \left(\binom{[n]}{d} \right) \to \overline{\mathbb{R}}$ as

$$\mu(I) := \log_p [L : K((x_i)_{i \in I})^{sep}]$$

This map is the Lindström valuation of the algebraic matroid.
The Lindström valuation

Definition (Bollen-D-Pendavingh, Cartwright)

K an algebraically closed field of characteristic $p > 0$

$L = K(x_1, \ldots, x_n) \supseteq K$ of transcendence degree d

$\sim \mu : \begin{pmatrix} [n] \\ d \end{pmatrix} \rightarrow \overline{\mathbb{R}}$ defined as $\mu(I) := \log_p[L : K((x_i)_{i \in I})^{\text{sep}}]$ is the Lindström valuation of the algebraic matroid.

Theorem (B-D-P): if the Lindström valuation is trivial, i.e. $\exists \alpha \in \mathbb{Z}^n$: for all bases $\mu(B) = \sum_{i \in B} \alpha_i$, then the algebraic matroid is also linear.
The Lindström valuation

Definition (Bollen-D-Pendavingh, Cartwright)

Let K be an algebraically closed field of characteristic $p > 0$, $L = K(x_1, \ldots, x_n) \supseteq K$ of transcendence degree d, then

$$\varphi \colon \binom{[n]}{d} \to \overline{\mathbb{R}}$$

is defined as

$$\mu(I) := \log_p [L : K((x_i)_{i \in I})_{\text{sep}}]$$

This is the Lindström valuation of the algebraic matroid.

Theorem (B-D-P): if the Lindström valuation is trivial, i.e. $\exists \alpha \in \mathbb{Z}^n$: for all bases $\mu(B) = \sum_{i \in B} \alpha_i$, then the algebraic matroid is also linear.

Corollary: Matroids, such as Fano, that admit only trivial valuations are algebraic over K iff they are linear over K.

Bollen used enhancements of this for ruling out algebraicity of many matroids on ≤ 9 elements.
K algebraically closed, char$K = p > 0$
G a one-dimensional algebraic group over K
⇝ then $G = (K, +)$ or $G = (K^*, \cdot)$ or $G = \text{an elliptic curve.}$
Matroids over one-dimensional groups

K algebraically closed, $\text{char} K = p > 0$
G a one-dimensional algebraic group over K
\leadsto then $G = (K, +)$ or $G = (K^*, \cdot)$ or $G = \text{an elliptic curve}$.

Construction: a closed, connected subgroup $X \subseteq G^n$
$I := \{I \subseteq [n] : X \to G^I \text{ is surjective} \}$ is an algebraic matroid.

Questions: Lindström valuation? Is the dual also algebraic?
Matroids over one-dimensional groups

\(K \) algebraically closed, \(\text{char} K = p > 0 \)
\(G \) a one-dimensional algebraic group over \(K \)
\(\leadsto \) then \(G = (K,+) \) or \(G = (K^*,\cdot) \) or \(G = \text{an elliptic curve} \).

Construction: a closed, connected subgroup \(X \subseteq G^n \leadsto \)
\(I := \{I \subseteq [n] : X \to G^I \text{ is surjective} \} \) is an algebraic matroid.

Questions: Lindström valuation? Is the dual also algebraic?

Key to the solution: the endomorphism ring \(\mathbb{E} \) of \(G \):
• \(K[F] \) with \(Fa = a^pF \) if \(G = (K,+); \)
• \(\mathbb{Z} \) if \(G = (K^*,\cdot) \); and
• \(\mathbb{Z} \) or an order in an imaginary quadratic number field or in a quaternion algebra if \(G = \text{an elliptic curve} \).

In all cases, \(\mathbb{E} \) is an Ore ring, hence generates a skew field \(\mathbb{Q} \).
The closed subgroup $X \subseteq G^n$ is the image of a map $G^d \to G^n$ given by a rank-d matrix $A \in \mathbb{F}^{n \times d}$, and is uniquely determined by the column span of A, a right Q-subspace of Q^n.
The closed subgroup $X \subseteq G^n$ is the image of a map $G^d \to G^n$ given by a rank-d matrix $A \in \mathbb{E}^{n\times d}$, and is uniquely determined by the column span of A, a right Q-subspace of Q^n.

The ring \mathbb{E} comes with a valuation: $v(\alpha)$ is the degree of inseparability of $\alpha : G \to G$; this extends to $v : Q \to \overline{\mathbb{R}}$.
The closed subgroup \(X \subseteq G^n \) is the image of a map \(G^d \to G^n \) given by a rank-\(d \) matrix \(A \in \mathbb{E}^{n \times d} \), and is uniquely determined by the column span of \(A \), a right \(\mathbb{Q} \)-subspace of \(\mathbb{Q}^n \).

The ring \(\mathbb{E} \) comes with a valuation: \(v(\alpha) \) is the degree of inseparability of \(\alpha : G \to G \); this extends to \(v : \mathbb{Q} \to \mathbb{R} \).

Theorem (B-Cartwright-D)
The Lindström valuation of the matroid defined by \(X \) maps \(I \subseteq [n] \) of size \(d \) to \(v(\text{Diedonné determinant of } A[I]) \).
From matrix to matroid (valuation) III

The closed subgroup $X \subseteq G^n$ is the image of a map $G^d \to G^n$ given by a rank-d matrix $A \in \mathbb{E}^{n \times d}$, and is uniquely determined by the column span of A, a right Q-subspace of Q^n.

The ring \mathbb{E} comes with a valuation: $v(\alpha)$ is the degree of inseparability of $\alpha : G \to G$; this extends to $v : Q \to \overline{\mathbb{R}}$.

Theorem (B-Cartwright-D)
The Lindström valuation of the matroid defined by X maps $I \subseteq [n]$ of size d to $v(\text{Diedonné determinant of } A[I])$.

Theorem (B-C-D)
The dual matroid is also that of a closed subgroup X^\vee of G^n.

$\text{Colspace}(A)^\perp$ is a left subspace, but fortunately $Q \cong Q^{\text{op}}$.
Dual valuations

Definition (Dress-Wenzel)
If $\mu : \left(\begin{bmatrix} n \\ d \end{bmatrix} \right) \rightarrow \bar{\mathbb{R}}$ is a valuation, then $\mu' : \left(\begin{bmatrix} n \\ n - d \end{bmatrix} \right) \rightarrow \bar{\mathbb{R}}$, $\mu'(I) = \mu(I^c)$ is the dual valuation.
Dual valuations

Definition (Dress-Wenzel)

If $\mu : \left(\begin{bmatrix} n \\ d \end{bmatrix} \right) \to \mathbb{R}$ is a valuation, then $\mu' : \left(\begin{bmatrix} n \\ n-d \end{bmatrix} \right) \to \mathbb{R}$, $\mu'(I) = \mu(I^c)$ is the dual valuation.

This notion is compatible with the dual of a linear matroid, but *not* with the construction of X' above: take $G = (K, +)$, $E = K[F]$ and

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & F \end{bmatrix} \quad \Rightarrow \quad A^\perp = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & F & 0 & -1 \end{bmatrix} \quad \Rightarrow \quad A^\vee = \begin{bmatrix} 1 & 1 \\ 1 & F^{-1} \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$
Definition (Dress-Wenzel)
If \(\mu : \begin{pmatrix} n \\ d \end{pmatrix} \rightarrow \overline{\mathbb{R}} \) is a valuation, then \(\mu' : \begin{pmatrix} n \\ n-d \end{pmatrix} \rightarrow \overline{\mathbb{R}}, \) \(\mu'(I) = \mu(I^c) \) is the dual valuation.

This notion is compatible with the dual of a linear matroid, but not with the construction of \(X' \) above: take \(G = (K,+), \) \(E = K[F] \) and

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & F
\end{bmatrix} \quad \rightarrow \quad A^\perp = \begin{bmatrix}
1 & 1 & -1 & 0 \\
1 & F & 0 & -1
\end{bmatrix} \quad \rightarrow \quad A^\vee = \begin{bmatrix}
1 & 1 & F^{-1} \\
-1 & 0 \\
0 & -1
\end{bmatrix}
\]

\(\mu(14) + \mu(23) - \mu(13) - \mu(24) = 1 + 0 - 0 - 0 = 1 \) but \(\mu^\vee(23) + \mu^\vee(14) - \mu^\vee(24) - \mu^\vee(13) = -1 + 0 - 0 - 0 = -1 \)
Theorem (B-C-D): The set of Lindström valuations of algebraic matroids is not closed under duality.

Proof sketch: via a universality construction of Evans-Hrushovski, we construct a matroid M^\vee s.t. every algebraic realisation of M^\vee is equivalent to one from a subgroup $X^\vee \subseteq G^n$ for some one-dimensional algebraic group G, but such that the Lindström valuation of X is not the dual to that of X^\vee. Then the dual of the Lindström valuation of X is not a Lindström valuation.
• Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.
• Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.

• Open problem: decide deterministically in polynomial time whether \(S \subseteq \mathbb{Q}^n \) can be partitioned by a hyperplane into two independent sets \(\prec \) deterministic polynomial-time algorithm for generic rank-two matrix completion.
• Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.

• Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.

• Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are *not* closed under duality.
Summarising

• Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.

• Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.

• Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are *not* closed under duality.

• Still, much work needs to be done before the ugly ducks of algebraic matroids mature into beautiful swans!
Algebraic matroids arise from generic completion problems. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.

Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.

Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are not closed under duality.

Still, much work needs to be done before the ugly ducks of algebraic matroids mature into beautiful swans!

Thank you!