On critical rank-k approximations to tensors

Jan Draisma
(jww Giorgio Ottaviani and Alicia Tocino)

Atlanta, August 2017
The Eckart-Young Theorem revisited

SVD

\[A \in \mathbb{R}^{m \times n}, \ m \leq n \leadsto A = \sum_{i=1}^{m} \sigma_i u_i v_i^T \]

with singular values \(\sigma_1 \geq \cdots \geq \sigma_m \geq 0 \) and \((u_i | u_j) = (v_i | v_j) = \delta_{ij} \).

Theorem

\[\sum_{i=1}^{k} \sigma_i u_i v_i^T \]

minimises \(d_A(B) := ||A - B||^2 = \sum_{i,j} (a_{ij} - b_{ij})^2 \) among rank \(\leq k \)-matrices.
The Eckart-Young Theorem revisited

\section*{SVD}

\(A \in \mathbb{R}^{m \times n}, m \leq n \leadsto A = \sum_{i=1}^{m} \sigma_i u_i v_i^T \) with singular values \(\sigma_1 \geq \cdots \geq \sigma_m \geq 0 \) and \((u_i|u_j) = (v_i|v_j) = \delta_{ij} \).

\section*{Theorem}

\(\sum_{i=1}^{k} \sigma_i u_i v_i^T \) minimises \(d_A(B) := ||A - B||^2 = \sum_{i,j} (a_{ij} - b_{ij})^2 \) among rank \(\leq k \)-matrices.

\section*{Refinement}

If \(\sigma_1 > \cdots > \sigma_m > 0 \), then the critical points of \(d_A \) on the manifold of rank-\(k \) matrices are \(\sum_{i \in I} \sigma_i u_i v_i^T \) for \(|I| = k \).

\textit{These lie in the span of the critical rank-1 approximations.}
Main result

Theorem (D-Ottaviani-Tocino)
Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.
Main result

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting

- V_1, \ldots, V_p f.d. \mathbb{C}-spaces with symmetric bilinear forms $(\cdot | \cdot)$
- d_1, \ldots, d_p natural numbers ≥ 1
- $T := S^{d_1} V_1 \otimes \cdots \otimes S^{d_p} V_p$ equipped with $(\cdot | \cdot)$ satisfying

\[(v_1^{d_1} \otimes \cdots \otimes v_p^{d_p} | w_1^{d_1} \otimes \cdots \otimes w_p^{d_p}) = (v_1 | w_1)^{d_1} \cdots (v_p | w_p)^{d_p} \]
Main result

Theorem (D-Ottaviani-Tocino)
Under mild conditions, the critical rank-k approximations to a *tensor* f also lie in the span of its critical rank-1 approximations.

Setting
- V_1, \ldots, V_p f.d. \mathbb{C}-spaces with symmetric bilinear forms $(\cdot | \cdot)$
- d_1, \ldots, d_p natural numbers ≥ 1
- $T := S^{d_1}V_1 \otimes \cdots \otimes S^{d_p}V_p$ equipped with $(\cdot | \cdot)$ satisfying

 $$(v_1^{d_1} \otimes \cdots \otimes v_p^{d_p} | w_1^{d_1} \otimes \cdots \otimes w_p^{d_p}) = (v_1 | w_1)^{d_1} \cdots (v_p | w_p)^{d_p}$$

Mild conditions
- $f \in T$ is sufficiently general
- for all i with $d_i = 1$: $(\dim V_i - 1) \leq \sum_{j \neq i}(\dim V_j - 1)$

Necessary?
Main result

Theorem (D-Ottaviani-Tocino)
Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting
- $X := \{v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}\} \leq T$ the variety of rank ≤ 1 tensors
- $\sigma_k X := \{x_1 + \cdots + x_k \mid x_i \in X\}$ the k-th secant variety
Main result

Theorem (D-Ottaviani-Tocino)
Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting
- $X := \{v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}\} \leq T$ the variety of rank ≤ 1 tensors
- $\sigma_k X := \{x_1 + \cdots + x_k \mid x_i \in X\}$ the k-th secant variety

Definition
A critical rank-k approximation to $f \in T$ is a smooth point $g \in \sigma_k X$ such that $f - g \perp T_g \sigma_k X$.
The critical space

For each \(i \in \{1, \ldots, p\} \), there is a natural skew bilinear map
\([.|.|]_i : T \times T \to \bigwedge^2 V_i\) constructed from the bilinear forms.

Definition
The **critical space** for \(f \in T \) is \(H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \} \).
The critical space

For each $i \in \{1, \ldots, p\}$, there is a natural skew bilinear map $[\cdot|\cdot]_i : T \times T \to \bigwedge^2 V_i$ constructed from the bilinear forms.

Definition
The critical space for $f \in T$ is $H_f := \{g \in T | \forall i : [f|g]_i = 0\}$.

Example: matrices
For $A = \sum_{i=1}^{m} \sigma_i u_i v_i^T \in \mathbb{R}^{m \times n}$ this is the set of B such that AB^T and $A^T B$ are both symmetric; so each $u_j v_j^T \in H_A$.

Moreover, if the σ_i are positive and distinct, then H_A is the span of the $u_j v_j^T$.

Remark
H_f was called singular space by Ottaviani-Paoletti.
Proof sketch

Proposition 1
Under same mild conditions, $\text{codim}_T H_f = \sum_{i=1}^{p} \dim \bigwedge^2 V_i$.
Proof sketch

Proposition 1
Under same mild conditions, \(\text{codim}_T H_f = \sum_{i=1}^{p} \dim \bigwedge^2 V_i \).

Proposition 2
The critical rank-\(k \) approximations to \(f \) lie in \(H_f \).
Proof sketch

Proposition 1
Under same mild conditions, $\text{codim}_T H_f = \sum_{i=1}^{p} \dim \bigwedge^2 V_i$.

Proposition 2
The critical rank-k approximations to f lie in H_f.

Proposition 3
The critical rank-one approximations to f span a space of the same codimension $\sum_i \dim \bigwedge^2 V_i$.
Proof sketch

Proposition 1
Under same mild conditions, \(\text{codim}_TH_f = \sum_{i=1}^{p} \dim \bigwedge^2 V_i \).

Proposition 2
The critical rank-\(k \) approximations to \(f \) lie in \(H_f \).

Proposition 3
The critical rank-one approximations to \(f \) span a space of the same codimension \(\sum_i \dim \bigwedge^2 V_i \).

Ad 3: Following Friedlander-Ottaviani, interpret the rank-one approximations as the zeroes of a section of a certain vector bundle on \(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_p \), and we use vector bundle techniques.

Ad 1: Find an explicit (sparse) \(f \) for which this holds.
Proof sketch of Proposition 2

Definition
The critical space for $f \in T$ is $H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \}$.

Proposition 2
The critical rank-k approximations to f lie in H_f.
Definition
The critical space for \(f \in T \) is \(H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \} \).

Proposition 2
The critical rank-\(k \) approximations to \(f \) lie in \(H_f \).

• Let \(g := x_1 + \cdots + x_k \) be critical for \(f \), so \(\forall i : f - g \perp T_{x_i}X \).
Definition
The critical space for $f \in T$ is $H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \}$.

Proposition 2
The critical rank-k approximations to f lie in H_f.

• Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f - g \perp T_{x_i} X$.

• Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i. This gives an x_1-adapted monomial basis of T.
Definition
The critical space for \(f \in T \) is \(H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \} \).

Proposition 2
The critical rank-\(k \) approximations to \(f \) lie in \(H_f \).

• Let \(g := x_1 + \cdots + x_k \) be critical for \(f \), so \(\forall i : f - g \perp T_{x_i}X \).
• Write \(x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p} \), and extend each \(v_i \) to an orthogonal basis of \(V_i \). This gives an \(x_1 \)-adapted monomial basis of \(T \).
• Now \(f - g \) is a linear combination of monomials that have gcd of degree \(< -1 + \sum_i d_i \) with \(x_1 \). Hence \(\forall i : [f - g|x_1]_i = 0 \).
Proof sketch of Proposition 2

Definition
The critical space for \(f \in T \) is \(H_f := \{ g \in T \mid \forall i : [f|g]_i = 0 \} \).

Proposition 2
The critical rank-\(k \) approximations to \(f \) lie in \(H_f \).

- Let \(g := x_1 + \cdots + x_k \) be critical for \(f \), so \(\forall i : f - g \perp T_{x_i}X \).
- Write \(x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p} \), and extend each \(v_i \) to an orthogonal basis of \(V_i \). This gives an \(x_1 \)-adapted monomial basis of \(T \).
- Now \(f - g \) is a linear combination of monomials that have gcd of degree \(< -1 + \sum_i d_i \) with \(x_1 \). Hence \(\forall i : [f - g|x_1]_i = 0 \).
- Similarly for \(x_2 \) etc, so \([f - g|g]_i = [f - g|x_1 + \cdots + x_k]_i = 0 \).
Proof sketch of Proposition 2

Definition
The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Proposition 2
The critical rank-k approximations to f lie in H_f.

• Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f - g \perp T_{x_i}X$.
• Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i. This gives an x_1-adapted monomial basis of T.
• Now $f - g$ is a linear combination of monomials that have gcd of degree $<-1 + \sum_i d_i$ with x_1. Hence $\forall i : [f - g|x_1]_i = 0$.
• Similarly for x_2 etc, so $[f - g|g]_i = [f - g|x_1 + \cdots + x_k]_i = 0$.
• Since $[g|g]_i = 0$, also $[f|g]_i = 0$. \qed
Theorem (D-Ottaviani-Tocino)
Under mild conditions, the critical rank-k approximations to a tensor lie in the span of its critical rank-1 approximations.

Disclaimer
This does not mean that a best rank-k approximation can be found by iteratively subtracting best rank-1 approximations. This is true only seldomly (Vannieuwenhoven, Nicaise, Vandebriil, and Meerbergen).

On the arXiv soon . . . comments welcome!