(Uniform) determinantal representations

Jan Draisma
Universität Bern

October 2016, Firenze
$R := \mathbb{C}[x_1, \ldots, x_n]$ and $R_{\leq d} := \{ p \in R \mid \deg p \leq d \}$

Definition

A **determinantal representation** of $p \in R$ of size N is a matrix $M \in R_{\leq 1}^{N \times N}$ with $\det(M) = p$.
Determinantal representations

\[R := \mathbb{C}[x_1, \ldots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \} \]

Definition

A *determinantal representation* of \(p \in R \) of size \(N \) is a matrix \(M \in R_{\leq 1}^{N \times N} \) with \(\det(M) = p \).

\(n = 1 \): companion matrices

\[
\begin{bmatrix}
 x & -1 \\
 \quad & x & -1 \\
 \quad & \quad & \quad & \ddots & \ddots \\
 \quad & \quad & \quad & \quad & x & -1 \\
 \quad & \quad & \quad & \quad & a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} + a_n x
\end{bmatrix}
\]

\[
\det \left(\begin{bmatrix}
 x & -1 \\
 \quad & x & -1 \\
 \quad & \quad & \quad & \ddots & \ddots \\
 \quad & \quad & \quad & \quad & x & -1 \\
 \quad & \quad & \quad & \quad & a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} + a_n x
\end{bmatrix} \right) = a_0 + a_1 x + \ldots + a_n x^n
\]
Determinantal representations

\[R := \mathbb{C}[x_1, \ldots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \} \]

Definition

A *determinantal representation* of \(p \in R \) of size \(N \) is a matrix \(M \in R_{\leq 1}^{N \times N} \) with \(\det(M) = p \).

A bivariate example

\[
\begin{vmatrix}
 x & -1 \\
 y & -1 \\
 a + bx + cy & dx + ey & fy
\end{vmatrix} = a + bx + cy + dx^2 + exy + fy^2
\]
Determinantal representations

\[R := \mathbb{C}[x_1, \ldots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \text{deg } p \leq d \} \]

Definition

A determinantal representation of \(p \in R \) of size \(N \) is a matrix \(M \in R_{\leq 1}^{N \times N} \) with \(\det(M) = p \).

A bivariate example

\[
\begin{vmatrix}
 x & -1 \\
 y & -1 \\
 a + bx + cy & dx + ey & fy
\end{vmatrix}
= a + bx + cy + dx^2 + exy + fy^2
\]

Determinantal representations always exist, but how small?

\(\leadsto \) the determinantal complexity \(\text{dc}(p) \) is the smallest \(N \).
Why?
Motivation I: permanent versus determinant

“If p has a determinantal representation M of small size N, then p can be evaluated efficiently using Gaussian elimination.”
Motivation I: permanent versus determinant

“If p has a determinantal representation M of small size N, then p can be evaluated efficiently using Gaussian elimination.”

Definition

$$\text{perm}_m := \sum_{\pi \in S_m} x_{1\pi(1)} \cdots x_{m\pi(m)}$$ is the $m \times m$ permanent.

Example

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = 3 \text{ counts perfect matchings: }$$

\begin{center}
\includegraphics[width=0.5\textwidth]{perfect_matchings.png}
\end{center}
Motivation I: permanent versus determinant

“If \(p \) has a determinantal representation \(M \) of small size \(N \), then \(p \) can be evaluated efficiently using Gaussian elimination.”

Definition
\[
\text{perm}_m := \sum_{\pi \in S_m} x_{1\pi(1)} \cdots x_{m\pi(m)} \text{ is the } m \times m \text{ permanent.}
\]

Example
\[
\text{perm}_3 \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix} = 3 \text{ counts } \text{perfect matchings}:
\]

Counting matchings in bipartite graphs is believed hard, so \(\text{dc} (\text{perm}_m) \) should be large!
Conjecture

$\text{dc}(\text{perm}_m)$ grows faster with m than any polynomial.
Conjecture

$dc(\text{perm}_m)$ grows faster with m than any polynomial.

Best known bounds

$\frac{m^2}{2} \leq dc(\text{perm}_m) \leq 2^m - 1$

[Valiant, 70s]

[Mignon-Ressayre 04, Grenet 12]

[Alper-Bogart-Velasco 15: = 7 for $m = 3$]
Geometric complexity theory

Conjecture [Valiant, 70s]
dc(perm$_m$) grows faster with m than any polynomial.

Best known bounds [Mignon-Ressayre 04, Grenet 12]
\[
\frac{m^2}{2} \leq dc(\text{perm}_m) \leq 2^m - 1
\]
[Alper-Bogart-Velasco 15: $= 7$ for $m = 3$]

Proof sketch of lower bound
If $\psi : \mathbb{C}^{m \times m} \rightarrow \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \text{perm}_m(A)$,
\[
J := \begin{bmatrix}
-m + 1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{bmatrix}
\]
\[
\psi(J) = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{bmatrix}
\]
\[
\text{perm}_m = 0, \quad \det_N = 0
\]
Conjecture

$\text{dc}(\text{perm}_m)$ grows faster with m than any polynomial.

Best known bounds

$\frac{m^2}{2} \leq \text{dc}(\text{perm}_m) \leq 2^m - 1$

Proof sketch of lower bound

If $\psi : \mathbb{C}^{m \times m} \rightarrow \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \text{perm}_m(A)$,

$$J := \begin{bmatrix}
-m + 1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{bmatrix}$$

$q_1(X) := \text{quadratic part of } \text{perm}_m(J + X), \text{ form of rank } m^2$

$q_2(Y) := \text{quadratic part of } \det_N(\psi(J) + Y), \text{ form of rank } \leq 2N$
Geometric complexity theory

Conjecture [Valiant, 70s]
dc(perm_m) grows faster with m than any polynomial.

Best known bounds [Mignon-Ressayre 04, Grenet 12]
\[
\frac{m^2}{2} \leq \text{dc}(\text{perm}_m) \leq 2^m - 1 \quad \text{[Alper-Bogart-Velasco 15: } = 7 \text{ for } m = 3]\]

Proof sketch of lower bound
If $\psi : \mathbb{C}^{m \times m} \to \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \text{perm}_m(A)$,
\[
J := \begin{bmatrix}
-m + 1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 \\
\end{bmatrix}
\]
\[
\text{perm}_m = 0 \quad \text{det}_N = 0
\]
$q_1(X) := \text{quadratic part of } \text{perm}_m(J + X), \text{ form of rank } m^2$
$q_2(Y) := \text{quadratic part of } \det_N(\psi(J) + Y), \text{ form of rank } \leq 2N$
Now $q_1(X) = q_2(L(X))$ where L linear part of ψ, so $m^2 \leq 2N$. \qed
Grenet’s $2^m - 1$ construction

x_{ij} labels an arrow from an $(i - 1)$-set to an i-set by adding j.
Theorem [Landsberg-Ressayre, 15]
Grenet’s representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.
Geometric complexity theory

Theorem [Landsberg-Ressayre, 15]
Grenet’s representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.

GCT Programme [Mumuley-Sohoni, 01-]
Compare orbit closures X_1, X_2 of $\ell^{N-m}\text{perm}_m$ and \det_N inside the space of degree-N polynomials in N^2 variables under $G = \text{GL}_{N^2}$; try to show that $X_1 \not\subseteq X_2$ by showing that multiplicities of certain G-representations are higher in $\mathbb{C}[X_1]$ than in $\mathbb{C}[X_2]$ unless N is super-polynomial in m.
Geometric complexity theory

Theorem [Landsberg-Ressayre, 15]
Grenet’s representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.

GCT Programme [Mulmuley-Sohoni, 01-]
Compare orbit closures X_1, X_2 of $\ell^{N-m}\text{perm}_m$ and \det_N inside the space of degree-N polynomials in N^2 variables under $G = \text{GL}_{N^2}$; try to show that $X_1 \not\subseteq X_2$ by showing that multiplicities of certain G-representations are higher in $\mathbb{C}[X_1]$ than in $\mathbb{C}[X_2]$ unless N is super-polynomial in m.

Theorem [Bürgisser-Ikenmeyer-Panova, 16]
This approach does not work if higher than is restricted to $1 > 0$ (so-called occurrence obstructions).
Motivation II: Solving systems of equations

In numerics, solving a univariate equation \(p(x) = 0 \) is often done by finding the eigenvalues of the companion matrix of \(p \).
Motivation II: Solving systems of equations

In numerics, solving a univariate equation $p(x) = 0$ is often done by finding the eigenvalues of the companion matrix of p.

Proposal [Plestenjak-Hochstenbach, 16]

To solve $p(x, y) = q(x, y) = 0$ write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1 x + yB_2)$ and solve the two-parameter eigenvalue problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.
Motivation II: Solving systems of equations

In numerics, solving a univariate equation $p(x) = 0$ is often done by finding the eigenvalues of the companion matrix of p.

Proposal

To solve $p(x, y) = q(x, y) = 0$ write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1 + yB_2)$ and solve the two-parameter eigenvalue problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.

\Rightarrow translates to a joint pair of generalised eigenvalue problems:

$(\Delta_1 - x\Delta_0)w = 0$ and $(\Delta_2 - y\Delta_0)w = 0$ where $w = u \otimes v$ and

$\Delta_0 = A_1 \otimes B_2 - A_2 \otimes B_1, \Delta_1 = A_2 \otimes B_0 - A_0 \otimes B_2, \Delta_2 = A_0 \otimes B_1 - A_1 \otimes B_0$
Motivation II: Solving systems of equations

In numerics, solving a univariate equation $p(x) = 0$ is often done by finding the eigenvalues of the companion matrix of p.

Proposal

To solve $p(x, y) = q(x, y) = 0$ write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1x + yB_2)$ and solve the two-parameter eigenvalue problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.

\Rightarrow translates to a joint pair of generalised eigenvalue problems:

$(\Delta_1 - x\Delta_0)w = 0$ and $(\Delta_2 - y\Delta_0)w = 0$ where $w = u \otimes v$ and $\Delta_0 = A_1 \otimes B_2 - A_2 \otimes B_1$, $\Delta_1 = A_2 \otimes B_0 - A_0 \otimes B_2$, $\Delta_2 = A_0 \otimes B_1 - A_1 \otimes B_0$

If the sizes are N, then Δ_i have size N^2, and solving takes $(N^2)^3 \ldots$ (plane curves have det rep of size = deg, but harder to compute).
Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in \mathbb{R}_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in \mathbb{R}_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.
Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16] For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

For the upper bound, the determinantal representation can be chosen to depend bi-affine-linearly on x_1, \ldots, x_n and on the coefficients of p; these are uniform determinantal representations.
Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

For the upper bound, the determinantal representation can be chosen to depend bi-affine-linearly on x_1, \ldots, x_n and on the coefficients of p; these are uniform determinantal representations.

Proof of lower bound
If sufficiently general $p \in R_{\leq d}$ have $dc(p) \leq N$, then the map $\det : R_{\leq 1}^{N \times N} \to R_{\leq N}$ contains $R_{\leq d}$ in the closure of its image. Comparing dimensions, find $N^2 \cdot (n + 1) \geq \dim_{\mathbb{C}} R_{\leq d} = \binom{n + d}{n}$. □
Definition

Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.
Spaces connected to 1

Definition
Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.

Example
For $n = 2$, V spanned by these monomials is connected to 1:
Spaces connected to 1

Definition
Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.

Example
For $n = 2$, V spanned by these monomials is connected to 1:

Lemma
V connected to 1, with basis $1 = f_1, f_2, \ldots, f_m$ of ascending degrees, write $f_i = \sum_{j=1}^{i-1} \ell_{ij} f_j$ with $\ell_{ij} \in R_{\leq 1}$. Then $V = \text{the span of the}$

$$(m-1) \times (m-1)$-$\text{subdeterminants of }$}

$$M(V) := \begin{bmatrix}
\ell_{21} & -1 \\
\ell_{31} & \ell_{32} & -1 \\
\vdots & & \ddots & \ddots \\
\ell_{m1} & \ell_{m2} & \cdots & \ell_{m,m-1} & -1
\end{bmatrix}$$
First construction

Proposition
Let \(V \subseteq R \) be connected to 1, of dimension \(m \), and such that \(R_{\leq 1} \cdot V \supseteq R_{\leq d} \). Then there is a uniform determinantal representation of size \(m \) for the polynomials in \(R_{\leq d} \).
First construction

Proposition
Let $V \subseteq R$ be connected to 1, of dimension m, and such that $R_{\leq 1} \cdot V \supseteq R_{\leq d}$. Then there is a uniform determinantal representation of size m for the polynomials in $R_{\leq d}$.

Example
\[
\begin{vmatrix}
x & -1 \\
y & -1 \\
a + bx + cy & dx + ey & fy \\
\end{vmatrix} = a + bx + cy + dx^2 + exy + fy^2
\]
First construction

Proposition
Let $V \subseteq R$ be connected to 1, of dimension m, and such that $R_{\leq 1} \cdot V \supseteq R_{\leq d}$. Then there is a uniform determinantal representation of size m for the polynomials in $R_{\leq d}$.

Example
$$
\begin{vmatrix}
 x & -1 \\
 y & -1 \\
 a + bx + cy & dx + ey & fy
\end{vmatrix}
= a + bx + cy + dx^2 + exy + fy^2
$$

Theorem
For $n = 2$ there exist uniform \det representations of size $\sim \frac{d^2}{4}$.

[Hochstenbach-Plestenjak 16]
Analysis of first construction

V connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply $\dim V \geq \frac{1}{n} \binom{n + d}{n}$
Analysis of first construction

V connected to 1 and $R_{≤1} \cdot V \supseteq R_{≤d}$ imply $\dim V \geq \frac{1}{n} \binom{n + d}{n}$

Proposition

For fixed n, \exists uniform determinantal representation of size $\sim \frac{d^n}{n \cdot n!}$.
Analysis of first construction

\[V \text{ connected to } 1 \text{ and } R_{\leq 1} \cdot V \supseteq R_{\leq d} \text{ imply } \dim V \geq \frac{1}{n} \binom{n + d}{n} \]

Proposition

For fixed \(n \), \(\exists \) uniform determinantal representation of size \(\sim \frac{d^n}{n \cdot n!} \).

Construction uses the lattice of type \(A_{n-1} \) with generating matrix

\[
\begin{bmatrix}
2 & -1 \\
-1 & 2 & \ddots \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{bmatrix}
\]
Analysis of first construction

V connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply $\dim V \geq \frac{1}{n} \left(\binom{n+d}{n} \right)$

Proposition

For fixed n, \exists uniform determinantal representation of size $\sim \frac{d^n}{n \cdot n!}$.

Construction uses the lattice of type A_{n-1} with generating matrix

\[
\begin{pmatrix}
2 & -1 & & & \\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & -1 \\
& & -1 & 2 & \\
& & & -1 & 2
\end{pmatrix}
\]

But the exponent of d is n rather than $n/2$.

(David Madore, YouTube)
Second construction: divide and conquer!

Proposition

Suppose $V_1, V_2 \subseteq R$ connected to 1 such that $R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d}$. Then there is a uniform det representation of degree-d polynomials of size $-1 + \dim V_1 + \dim V_2$.
Second construction: divide and conquer!

Proposition

Suppose $V_1, V_2 \subseteq R$ connected to 1 such that $R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d}$. Then there is a uniform det representation of degree-d polynomials of size $-1 + \dim V_1 + \dim V_2$.

Example

$$
\begin{vmatrix}
 x & -1 \\
 x & -1 \\
\end{vmatrix}
\begin{vmatrix}
 y & -1 \\
 -1 & y \\
\end{vmatrix}
= \sum_{i+j \leq 2} c_{ij} x^i y^j
$$
Second construction: divide and conquer!

Proposition
Suppose \(V_1, V_2 \subseteq R \) connected to 1 such that \(R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d} \). Then there is a uniform det representation of degree-\(d \) polynomials of size \(-1 + \dim V_1 + \dim V_2\).

Example

\[
\begin{bmatrix}
 x & -1 \\
 x & -1 \\
 c_{00} & c_{10} & c_{20} \\
 c_{10} & c_{11} \\
 c_{20} & & & -1 & y \\
 & -1 & y & & & -1
\end{bmatrix} = \sum_{i+j\leq 2} c_{ij} x^i y^j
\]

\(\det M(V_1) \quad M(V_2)^T \)

Can we find \(V_1, V_2 \), connected to 1, of \(\dim \sim \sqrt{\dim R_{\leq d}} \) such that \((R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}\)?
A fractal

Can we find V_1, V_2, connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?
A fractal

Can we find V_1, V_2, connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For n even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2 + d}{n/2}$.

A fractal

Can we find V_1, V_2, connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For n even, split variables $\leadsto V_1, V_2$ of dimension $\left(\frac{n}{2} + d\right)$.

- For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of “dimension” $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_n$:
 - start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^j$;
 - $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
 - $A_i := B_i^n$;
 - connect to 0.
A fractal

Can we find V_1, V_2, connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?

• For n even, split variables $\leadsto V_1, V_2$ of dimension $\left(\frac{n}{2} + d\right)$.

• For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of “dimension” $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_n^{\geq 0}$:
 - start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^{2j}$;
 - $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
 - $A_i := B_i^n$;
 - connect to 0.
Can we find V_1, V_2, connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For n even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2 + d}{n/2}$.

- For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of “dimension” $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_{\geq 0}^n$:
 - start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^j$;
 - $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
 - $A_i := B_i^n$;
 - connect to 0.

Take V_i spanned by the monomials with exponent vectors in A_i. \qed
Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

Many questions remain:
- what are the best constants C_1, C_2?
- what about the regime where d is fixed and n runs?
- symmetric determinantal representations?
Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{m/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{m/2}$.

Many questions remain:
- what are the best constants C_1, C_2?
- what about the regime where d is fixed and n runs?
- symmetric determinantal representations?

Thank you!
Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C_1, C_2 such that a sufficiently general $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

Many questions remain:
• what are the best constants C_1, C_2?
• what about the regime where d is fixed and n runs?
• symmetric determinantal representations?

Thank you!

Motivation III: hyperbolic polynomials
If $p = \det(A_0 + \sum_i x_i A_i)$ with $A_i \in \mathbb{R}^{N \times N}$ symmetric and A_0 positive definite, then the restriction of p to any line through 0 has only real roots. For $n = 2$ the converse also holds (Helton-Vinnikov).