Tropical Brill-Noether theory

Jan Draisma
Eindhoven University of Technology

Island 4, Glasgow, 4 July 2011
The B(aker)-N(orin) game on graphs

Requirements
finite, connected, undirected graph Γ
d ≥ 0 chips
natural number r

Rules
B puts d chips on Γ
N demands $\geq r_v \geq 0$ chips at v with $\sum_v r_v = r$
B wins iff he can fire to meet N’s demand
Brill-Noether theorems for graphs

\[g := e(\Gamma) - v(\Gamma) + 1 \text{ genus of } \Gamma \]
\[\rho := g - (r + 1)(g - d + r) \]

Conjecture (Matthew Baker)
1. \(\rho \geq 0 \Rightarrow \text{B has a winning starting position.} \)
2. \(\rho < 0 \Rightarrow \text{B may not have one, depending on } \Gamma. \)
 \((\forall g \exists \Gamma \forall d, r : \rho < 0 \Rightarrow \text{Brill loses.})\)

Theorem (Baker / Caporaso)
1. is true.
 \((uses \text{ sophisticated algebraic geometry})\)

Theorem (Cools-D-Payne-Robeva)
2. is true.
 \((implies \text{ sophisticated algebraic geometry})\)
Chip dragging on graphs

Simultaneously moving all chips along edges, with zero net movement around every cycle.

Lemma
1. Chip dragging is realisable by chip firing.
2. W.l.o.g. B *drags* instead of *firing*.

Example 1: Γ a tree
\[\rho = g - (r+1)(g-d+r) = -(r+1)(-d+r) \]
B wins $\iff \rho \geq 0 \iff d \geq r$

Example 2: a hyperelliptic graph
\[d = 2, \ r = 1 \]
Who wins?
The B(rill)-N(oether) game on Riemann surface

Requirements
compact Riemann surface \(X \)
d chips
natural number \(r \)

Rules
B puts \(d \) chips on \(X \)
N demands \(\geq r_x \geq 0 \) chips at \(x \) with \(\sum_x r_x = r \)
B wins iff he can drag to meet N’s demand
Chip dragging on Riemann surfaces

Simultaneously moving chips \(c \) along paths \(\gamma_c : [0, 1] \to X \), such that
\[
\sum_c \langle \omega|_{\gamma(t)}, \gamma'_c(t) \rangle = 0
\]
for all holomorphic 1-forms \(\omega \) on \(X \).

Lemma
\[
D = \sum_c [\gamma_c(0)] \text{ initial position}
\]
\[
E = \sum_c [\gamma_c(1)] \text{ final position}
\]
\[
\iff E - D \text{ is divisor of meromorphic function on } X
\]
drag-equivalence = linear equivalence

Example: torus
only one holomorphic 1-form: \(dz \)
condition: \(\sum_c \gamma'_c(t) = 0 \)
when does B win?
Dimension count

$\omega_1, \ldots, \omega_g$ basis of holomorphic 1-forms

$x = (x_1, \ldots, x_d) \in X \times \cdots \times X$

$v_i \neq 0$ tangent vector at x_i

\leadsto matrix $A_x = (\langle \omega_i, v_j \rangle)_{ij} \in \mathbb{C}^{g \times d}$

(c_1v_1, \ldots, c_dv_d) infinitesimal dragging direction $\Rightarrow A(c_1, \ldots, c_d)^T = 0$

x winning for $B \Rightarrow$

dragging x fills $\geq r$-dimensional variety

where $\ker A$ is $\geq r$-dimensional

$\#$ conditions on $g \times d$-matrix to have

$\geq r$-dimensional kernel: $r(g - d + r)$

for B to have a winning position, “need”

$d - r(g - d + r) \geq r$

$\Leftrightarrow \rho = g - (r + 1)(g - d + r) \geq 0$
Brill-Noether theorems for Riemann surfaces

Theorem (Meis 1960, Kempf 1971, Kleiman-Laksov 1972)
\(\rho \geq 0 \Rightarrow \text{B has a winning position.} \)

Theorem (Griffiths-Harris 1980)
1. \(\rho < 0 \Rightarrow \text{B may lose, depending on } X. \)
\(\forall g \exists X \forall d, r : \rho < 0 \Rightarrow \text{B loses.} \)

2. \(\rho \geq 0 \) and \(X \) general
\(\Rightarrow \rho = \dim \{ \text{winning positions modulo dragging} \} \)

3. \(\rho = 0 \) and \(X \) general
\(\Rightarrow \# = \# \text{ standard tableaux of shape } \)
\((r + 1) \times (g - d + r) \) with entries 1, 2, \ldots, g
Specialisation

Algebro-geometric (Baker, Caporaso)
dual graph of special fibre
applies to arbitrary fields
integral starting positions for B

Complex-analytic (Mikhalkin-Zharkov)
conceptually simpler?
rational starting positions for B
\{${X_t}$\}_{t \neq 0} family of Riemman surfaces
$\rightsquigarrow \Gamma$ for $t \to 0$ (“tropical limit”)
holomorphic 1-forms on $X_t \rightsquigarrow$ “1-forms” on Γ
chip dragging on $X_t \rightsquigarrow$ chip dragging on Γ

Theorem
D_t winning for B on X_t and $D_t \to D$ on Γ for $t \to 0$
$\Rightarrow D$ winning on Γ.
Consequences of Specialisation

Meis/Kempf/Kleiman-Laksov
(\(\rho \geq 0 \) implies B wins on Riemann surfaces)
⇒ same statement for \(\Gamma \).
No combinatorial proof is known!

Cools-D-Payne-Robeva
(\(\rho < 0 \) ⇒ B loses for suitable \(\Gamma \))
⇒ same for Riemann surfaces (Griffiths-Harris 1 and 2, and probably 3).

Technical difficulties:
1. Find family \(\{X_t\}_t \) with
dual graph \(\Gamma \) (algebro-geometric) or
degenerating to \(\Gamma \) (complex-analytic);
2. show that \(t \mapsto D_t \) (winning position on \(X_t \))
can be chosen such that \(D_t \) “converges”.
Example (Cools-D-Payne-Robeva)

\[g = 4, d = 3, r = 1 \]
\[g - d + r = 2 \]
\[r + 1 = 2, \rho = 0 \]

\[
\begin{array}{cc}
1 & 3 \\
2 & 4 \\
\end{array}
\sim 1, 2, 3, 2, 1
\]

\[
\begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array}
\sim 1, 2, 1, 2, 1
\]
A larger example

\[g = 7, d = 7, r = 2 \]
\[\implies g - d + r = 2, r + 1 = 3, \rho = 1 \]

\[
\begin{array}{ccc}
1 & 2 & 4 \\
3 & 6 & 7 \\
\end{array}
\implies (21, 31, 32, 42, 31, 31, 32, 21) \text{ lingering lattice path}
\]

Theorem (Cools-D-Payne-Robeva)
B’s starting position \(\implies \) lingering lattice path in \(\mathbb{Z}^r \);
B wins iff path stays in chamber \(\{(x_1, \ldots, x_r) \mid x_1 > x_2 > \ldots > x_r > 0\} \).

\(\implies \rho \geq 0 \iff \) B wins
Castryck and Cools’s gonality conjecture

\[r = 1 \]
\[f \in \mathbb{C}[x, y] \text{ general with Newton polytope } \Delta \]
\[X := \{ f = 0 \} \text{ Riemann surface} \]

Conjecture

minimal \(d \) for which \(B \) wins on \(X := \{ f = 0 \} \)

(=minimal degree of a meromorphic map to \(\mathbb{P}^1 \))
equals \(d = \text{lattice width of } \Delta \)
(with two exceptions)
Purely combinatorial?

Theorem (van der Pol)
\[\rho \geq 0 \text{ and } \Gamma \text{ a cactus graph} \]
\[\Rightarrow B \text{ has winning positions with all chips at vertices.} \]

Future goal:
Understand Kleiman-Laksov for (metric) graphs.
Baker’s Specialisation Lemma

\(\mathcal{X}\) curve family over \(\mathbb{C}[[t]]\)
(proper, flat, regular scheme)
generic fibre \(\mathcal{X}_{\mathbb{C}((t))}\) smooth curve \(X\)
special fibre \(\mathcal{X}_{\mathbb{C}} = X_1 \cup \ldots \cup X_s\)
\(X_i\) smooth, intersections simple nodes
\(\leadsto\) dual graph \(\Gamma\) on \(\{u_1, \ldots, u_s\}\)
(metric with edge lengths \(1\))
\(\leadsto\) map \(X(\mathbb{C}((t)))) \rightarrow \{u_1, \ldots, u_s\}\)
well-behaved with respect to finite extensions \(\mathbb{C}((t^{1/n}))/\mathbb{C}((t))\)
\(\leadsto\) specialisation map \(\tau : X(\mathbb{C}\{\{t\}\}) \rightarrow \Gamma_\mathbb{Q}\)

Theorem
Brill wins with starting positing \(D\) on \(X(\mathbb{C}\{\{t\}\})\)
\(\Rightarrow\) Baker wins with starting position \(\tau(D)\) on \(\Gamma_\mathbb{Q}\)
Advertisement

84th European Study Group Mathematics with Industry

• 5 or 6 industrial problems
• one week of intensive collaboration
• about 70 participating mathematicians
• hosted by Eurandom, Eindhoven, 30 January-3 February 2012
• Google SWI 2012 mathematics