Symmetries and ∞-dim limits of algebro-statistical models

Jan Draisma

TU Eindhoven
Part I: some infinite-dimensional commutative algebra
What is an infinite-dimensional variety?

inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc.
What is an infinite-dimensional variety?

Inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc.

This talk

V: countable-dimensional space over \mathbb{C} (or \mathbb{R}) of coordinates V^*: dual space, topological space with Zariski topology

Closed subsets $X \subseteq V^*$ are called infinite-dimensional varieties.

Example

$V = \langle x_{ij} \mid i, j \in \mathbb{N} \rangle$, $X \subseteq V^*$ defined by equations $x_{ij}x_{kl} - x_{il}x_{kj}$
What is an infinite-dimensional variety?

inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc.

This talk

V: countable-dimensional space over \mathbb{C} (or \mathbb{R}) of coordinates

V^*: dual space, topological space with Zariski topology

Closed subsets $X \subseteq V^*$ are called infinite-dimensional varieties.

Example

$V = \langle x_{ij} | i, j \in \mathbb{N} \rangle$, $X \subseteq V^*$ defined by equations $x_{ij}x_{kl} - x_{il}x_{kj}$

Sequence model

If $V_1 \subseteq V_2 \subseteq \ldots$ finite-dimensional with $V = \bigcup_i V_i$, then $V^* = \lim_{\leftarrow} V_i^*$ with $V_1^* \hookleftarrow V_2^* \hookleftarrow \ldots$

(both as set and as topological space)
Noetherianity modulo group actions

Assume a group G acts by linear transformations on $V \overset{\sim}{\twoheadrightarrow} G$ acts on SV by algebra auto and on V^* by homeo.
Assume a group G acts by linear transformations on V.

\sim G acts on SV by algebra auto and on V^* by homeo.

For $X \subseteq V^*$ a closed set, $\mathbb{C}[X] := SV/I(X)$, where $I(X) \subseteq SV$ is the ideal of polynomials vanishing on X.
Assume a group G acts by linear transformations on V.

G acts on SV by algebra auto and on V^* by homeo.

For $X \subseteq V^*$ a closed set, $\mathbb{C}[X] := SV/I(X)$, where $I(X) \subseteq SV$ is the ideal of polynomials vanishing on X.

Assume $I(X)$ is G-stable, so that G acts on $\mathbb{C}[X]$.
Assume a group G acts by linear transformations on V.

G acts on SV by algebra auto and on V^* by homeo.

For $X \subseteq V^*$ a closed set, $\mathbb{C}[X] := SV/I(X)$, where $I(X) \subseteq SV$ is the ideal of polynomials vanishing on X.

Assume $I(X)$ is G-stable, so that G acts on $\mathbb{C}[X]$.

Definition

$\mathbb{C}[X]$ is G-Noetherian if every chain $I_1 \subseteq I_2 \subseteq \ldots$ of G-stable ideals stabilises

$(\Leftrightarrow$ each G-stable ideal is G-finitely generated.$)$
Noetherianity modulo group actions

Assume a group G acts by linear transformations on $V \rightsquigarrow G$ acts on SV by algebra auto and on V^* by homeo.

For $X \subseteq V^*$ a closed set, $\mathbb{C}[X] := SV/I(X)$, where $I(X) \subseteq SV$ is the ideal of polynomials vanishing on X.

Assume $I(X)$ is G-stable, so that G acts on $\mathbb{C}[X]$.

Definition

$\mathbb{C}[X]$ is G-Noetherian if every chain $I_1 \subseteq I_2 \subseteq \ldots$ of G-stable ideals stabilises $\quad (\Leftrightarrow$ each G-stable ideal is G-finitely generated.$)$

X is G-Noetherian if every chain $X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises $\quad (\Leftrightarrow$ each G-stable subvariety of X defined by fin many G-orbits of eqs.$)$
Assume a group G acts by linear transformations on V $\sim \rightarrow G$ acts on SV by algebra auto and on V^* by homeo.

For $X \subseteq V^*$ a closed set, $\mathbb{C}[X] := SV/I(X)$, where $I(X) \subseteq SV$ is the ideal of polynomials vanishing on X.

Assume $I(X)$ is G-stable, so that G acts on $\mathbb{C}[X]$.

Definition

$\mathbb{C}[X]$ is G-Noetherian if every chain $I_1 \subseteq I_2 \subseteq \ldots$ of G-stable ideals stabilises $(\Leftrightarrow$ each G-stable ideal is G-finitely generated$.)$

\Rightarrow

X is G-Noetherian if every chain $X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises $(\Leftrightarrow$ each G-stable subvariety of X defined by fin many G-orbits of eqs.$)$
(Non-)Examples of G-Noetherianity

Finite-by-infinite matrices
Fix $k \in \mathbb{N}$;
$\text{Sym}(\mathbb{N})$ acts on $V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle$
by $\pi(x_{ij}) = x_{i\pi(j)}$.
(Non-)Examples of G-Noetherianity

Finite-by-infinite matrices

Fix $k \in \mathbb{N}$;

Sym(\mathbb{N}) acts on $V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle$
by $\pi(x_{ij}) = x_{i\pi(j)}$.

Theorem [Cohen 87, Hillar-Sullivant 09]

$\mathbb{C}[x_{ij} \mid i \in [k], j \in \mathbb{N}] = \mathbb{C}[V^*]$ is Sym(\mathbb{N})-Noetherian.
(Non-)Examples of G-Noetherianity

Finite-by-infinite matrices

Fix $k \in \mathbb{N}$;

Sym(\mathbb{N}) acts on $V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle$
by $\pi(x_{ij}) = x_{i\pi(j)}$.

Theorem
[CoHe 87, Hillar-Sullivant 09]
$\mathbb{C}[x_{ij} \mid i \in [k], j \in \mathbb{N}] = \mathbb{C}[V^*]$ is Sym(\mathbb{N})-Noetherian.

Infinite-by-infinite matrices

Sym(\mathbb{N}) acts by $\pi(x_{ij}) = x_{\pi(i),\pi(j)}$
$\leadsto \mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}]$ is *not* Sym(\mathbb{N})-Noetherian;
e.g. the Sym(\mathbb{N})-stable ideal generated by $x_{12}x_{21}$, $x_{12}x_{23}x_{31}$, $x_{12}x_{23}x_{34}x_{41}$, ...
is not Sym(\mathbb{N})-finitely generated.

(neither Sym$(\mathbb{N}) \times$ Sym(\mathbb{N})-Noetherian)
(Non-)Examples, continued

Theorem (Matrices of bounded rank)

$\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}]/(\text{all } (k + 1) \times (k + 1)-\text{subdeterminants})$ is Sym(\mathbb{N})-Noetherian.

(uses $2k \times \mathbb{N}$-matrices and the FFT, SFT for GL_k)
Theorem (Matrices of bounded rank)

\(\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}] / (\text{all } (k + 1) \times (k + 1)-\text{subdeterminants}) \)

is Sym(\(\mathbb{N} \))-Noetherian.

(uses \(2k \times \mathbb{N} \)-matrices and the FFT, SFT for \(\text{GL}_k \))

Larger groups

\(\text{GL}_\mathbb{N} := \{ \text{invertible } \mathbb{N} \times \mathbb{N} \text{-matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0(i \neq j) \} \).
Theorem (Matrices of bounded rank)
\[\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}] / (\text{all } (k+1) \times (k+1)-\text{subdeterminants}) \]
is Sym(\mathbb{N})-Noetherian.
(uses 2k × \mathbb{N}\text{-matrices and the FFT, SFT for } GL_k)

Larger groups
GL_\mathbb{N} := \{\text{invertible } \mathbb{N} \times \mathbb{N}\text{-matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0(i \neq j)\}.

Theorem (symmetric matrices) [Snowden-Sam 2012]
\[\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}, x_{ij} = x_{ji}] \text{ is } GL_\mathbb{N}-\text{Noetherian via } g \circ x = gxg^T. \]
(Non-)Examples, continued

Theorem (Matrices of bounded rank)
\[\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}]/(\text{all } (k + 1) \times (k + 1)-\text{subdeterminants}) \]
is Sym(\mathbb{N})-Noetherian.

(uses 2k × \mathbb{N}-matrices and the FFT, SFT for GL}_k)

Larger groups
GL_\mathbb{N} := \{\text{invertible } \mathbb{N} \times \mathbb{N}-\text{matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0(i \neq j)\}.

Theorem (symmetric matrices) \[\text{[Snowden-Sam 2012]} \]
\[\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}, x_{ij} = x_{ji}] \text{ is } \text{GL}_\mathbb{N}-\text{Noetherian via } g \circ x = gxg^T. \]

Theorem \[\text{[D-Eggermont 2014]} \]
\[(\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^p \text{ is } \text{GL}_\mathbb{N} \times \text{GL}_\mathbb{N}-\text{Noetherian for each } p, \text{ via} \]
\[(g, h) \circ (x, \ldots, z) := (gxh^{-1}, \ldots, gzh^{-1}). \]
Example: second hypersimplex
\[P_n := \{ v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n \} \]
Finitely generated symmetric Markov bases

Example: second hypersimplex

\[P_n := \{v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n\} \]

Markov basis \(M_n \)

\[v_{ij} = v_{ji} \text{ and } v_{ij} + v_{kl} = v_{il} + v_{kj} \text{ for } i, j, k, l \text{ distinct} \]

\(\leadsto \text{ if } \sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij} \text{ with } c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}, \)

then the expressions are connected by such

moves without creating negative coefficients

[De Loera-Sturmfels-Thomas 1995]
Finitely generated symmetric Markov bases

Example: second hypersimplex

\[P_n := \{ v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n \} \]

Markov basis \(M_n \) \hfill [De Loera-Sturmfels-Thomas 1995]

\(v_{ij} = v_{ji} \) and \(v_{ij} + v_{kl} = v_{il} + v_{kj} \) for \(i, j, k, l \) distinct

\(\Rightarrow \) if \(\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij} \) with \(c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0} \),
then the expressions are connected by such moves without creating negative coefficients

Theorem \hfill [D-Eggermont-Krone-Leykin 2013]

For any family \((P_n \subseteq \mathbb{Z}^F \times \mathbb{Z}^{k\times n}) \), \(F \) finite, if \(P_n = \text{Sym}(n)P_{n_0} \) for \(n \geq n_0 \), then \(\exists n_1: \) for \(n \geq n_1 \) has a Markov basis \(M_n \) with \(M_n = \text{Sym}(n)M_{n_0} \).
Finitely generated symmetric Markov bases

Example: second hypersimplex

\[P_n := \{v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n\} \]

Markov basis \(M_n \) [De Loera-Sturmfels-Thomas 1995]

\(v_{ij} = v_{ji} \) and \(v_{ij} + v_{kl} = v_{il} + v_{kj} \) for \(i, j, k, l \) distinct

\(\leadsto \) if \(\sum_{ij} c_{ij}v_{ij} = \sum_{ij} d_{ij}v_{ij} \) with \(c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0} \),

then the expressions are connected by such moves without creating negative coefficients

Theorem [D-Eggermont-Krone-Leykin 2013]

For any family \((P_n \subseteq \mathbb{Z}^F \times \mathbb{Z}^{k \times n}) \), \(F \) finite, if \(P_n = \text{Sym}(n)P_{n_0} \) for \(n \geq n_0 \), then \(\exists n_1: \) for \(n \geq n_1 \) has a Markov basis \(M_n \) with \(M_n = \text{Sym}(n)M_{n_0} \).

Explicit results for width \(n_0 = 2 \): [Kahle-Krone-Leykin 2014]
Part II: Applications to algebro-statistical models
Constructing limits

Setting

V_1^*, V_2^*, \ldots fin-dim spaces; $X_i \subseteq V_i^*$ subvariety

G_i group acting linearly on V_i^* preserving X_i

$G_i \subseteq G_{i+1}$ & maps $\pi: V_{i+1}^* \rightarrow V_i^*$ and $\iota: V_i^* \rightarrow V_{i+1}^*$ both G_i-equivariant, mapping X_{i+1} into X_i and v.v. & $\pi \circ \iota = \text{id}$
Constructing limits

Setting

V_1^*, V_2^*, \ldots fin-dim spaces; $X_i \subseteq V_i^*$ subvariety

G_i group acting linearly on V_i^* preserving X_i

$G_i \subseteq G_{i+1}$ & maps $\pi : V_{i+1}^* \to V_i^*$ and $\iota : V_i^* \to V_{i+1}^*$ both G_i-equivariant, mapping X_{i+1} into X_i and v.v. & $\pi \circ \iota = \text{id}$

Definition

Sequence $(X_i \subseteq V_i^*)_i$ stabilises if for $n \gg 0$:

$p \in V_n^*$ lies in X_n iff $\forall g \in G_n \pi(gp) \in X_{n-1}$.
Constructing limits

Setting

V_1^*, V_2^*, \ldots fin-dim spaces; $X_i \subseteq V_i^*$ subvariety

G_i group acting linearly on V_i^* preserving X_i

$G_i \subseteq G_{i+1}$ & maps $\pi : V_{i+1}^* \rightarrow V_i^*$ and $\iota : V_i^* \rightarrow V_{i+1}^*$ both G_i-equivariant, mapping X_{i+1} into X_i and v.v. & $\pi \circ \iota = \text{id}$

Definition

Sequence $(X_i \subseteq V_i^*)_i$ stabilises if for $n \gg 0$:

$p \in V_n^*$ lies in X_n

iff $\forall g \in G_n \pi(gp) \in X_{n-1}$.

$V_\infty := \lim_\leftarrow V_n$; $X_\infty := \lim_\leftarrow X_n$; $G_\infty := \cup_n G_n$

Lemma Stabilisation is “equivalent” to: $X_\infty \subseteq V_\infty^*$ is defined by finitely many G_∞-orbits of equations.
I: The independent set theorem

Fixed row and column sums

$A, B \in \mathbb{Z}_{\geq 0}^{m \times n}$ with $a_{i+} = b_{i+}$ and $a_{+j} = b_{+j}$

$\Rightarrow \exists A = A_0, A_1, \ldots, A_k = B \in \mathbb{Z}_{\geq 0}^{m \times n}$ with

$A_l - A_{l-1} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \leadsto \text{moves "independent" of } m, n.$
I: The independent set theorem

Fixed row and column sums

$A, B \in \mathbb{Z}_{\geq 0}^{m \times n}$ with $a_{i+} = b_{i+}$ and $a_{+j} = b_{+j}$

$\Rightarrow \exists A = A_0, A_1, \ldots, A_k = B \in \mathbb{Z}_{\geq 0}^{m \times n}$ with

$A_l - A_{l-1} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \rightsquigarrow \text{moves "independent" of } m, n.$

Theorem [Diaconis-Sturmfels 1998]

basis of Markov moves = generating set of toric ideal

(e.g. ker$[y_{ij} \mapsto x_{i}z_{j}]$ generated by $\{y_{ij}y_{i'j'} - y_{ij}y_{i'j}\}$)
I: The independent set theorem

Fixed row and column sums
\(A, B \in \mathbb{Z}_{\geq 0}^{m \times n} \) with \(a_{i+} = b_{i+} \) and \(a_{+j} = b_{+j} \)
\(\Rightarrow \exists A = A_0, A_1, \ldots, A_k = B \in \mathbb{Z}_{\geq 0}^{m \times n} \) with
\[
A_l - A_{l-1} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \leadsto \text{moves "independent" of } m, n.
\]

Theorem [Diaconis-Sturmfels 1998]
basis of Markov moves = generating set of toric ideal
\((\text{e.g. ker}[y_{ij} \mapsto x_i z_j] \text{ generated by } \{y_{ij}y_{i'j'} - y_{ij}y_{i'j'}\})\)

Conjecture [Hoşten-Sullivant 2007]
Similar stabilisation conjecture for Markov basis for sampling higher-dimensional contingency tables.
Hierarchichal models

F family of subsets of $[m]\n
y(i_1, \ldots, i_m)$ and $x(S, (i_s)_{s \in S})$ for $S \in F$ variables

$I := \ker[y(i_1, \ldots, i_m) \mapsto \prod_{A \in S} x(S, (i_s)_{s \in S})]\n
Example

$m = 4, F = \{124, 13, 23\}\n
variables y(abcd), x(abd), z(ac), u(bc)\n
I = \ker[y(abcd) \mapsto x(abd)z(ac)u(bc)]\n
\begin{tikzpicture}[scale=0.5]
 \draw (0,0) -- (4,0) -- (2,2) -- (0,4) -- cycle;
 \fill[green!50!black] (0,0) -- (4,0) -- (2,2) -- (0,4) -- cycle;
 \draw[fill=black] (0,0) circle (0.1);
 \draw[fill=black] (4,0) circle (0.1);
 \draw[fill=black] (2,2) circle (0.1);
 \draw[fill=black] (0,4) circle (0.1);
 \node at (0,0) {1};
 \node at (4,0) {4};
 \node at (2,2) {3};
 \node at (0,4) {2};
\end{tikzpicture}
The independent set theorem, continued

Hierarchical models

F family of subsets of $[m]$

$y(i_1, \ldots, i_m)$ and $x(S, (i_s)_{s \in S})$ for $S \in F$ variables

$I := \ker[y(i_1, \ldots, i_m) \mapsto \prod_{A \in S} x(S, (i_s)_{s \in S})]$

Example

$m = 4, F = \{124, 13, 23\}$

variables $y(abcd), x(abd), z(ac), u(bc)$

$I = \ker[y(abcd) \mapsto x(abd)z(ac)u(bc)]$

Theorem

[Hillar-Sullivant 2012]

If $T \subseteq [m]$ independent set ($|T \cap S| \leq 1$ for $S \in F$);

$i_t, t \in T$ run through \mathbb{N} and $i_t, t \notin T$ through $[r_t]$

$\leadsto I$ generated by finitely many Inc(\mathbb{N})-orbits

(now this also follows from D-Eggermont-Krone-Leykin)
II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on $[n]$

$X_i, i \in [n]$: jointly Gaussian

$X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j$ where the $\epsilon_j \sim N(0, 1)$ independent

$\Sigma = (I - \Lambda)^{-T} \text{diag}(a_1^2, \ldots, a_n^2)(I - \Lambda)^{-1}$
II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on \([n]\)

\(X_i, i \in [n]:\) jointly Gaussian

\(X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j\) where the \(\epsilon_j \sim N(0, 1)\) independent

\(\sim \Sigma = (I - \Lambda)^{-T} \text{diag}(a_1^2, \ldots, a_n^2)(I - \Lambda)^{-1}\)

\(H \subseteq [m] \text{ hidden} \sim \Sigma_{[n]-H} \text{ principal submatrix model: Zariski closure of } \{\Sigma_{[n]-H}|\Lambda, a\}\)
II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on $[n]$

$X_i, i \in [n]$: jointly Gaussian

$X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j$ where the $\epsilon_j \sim N(0, 1)$ independent

$\Sigma = (I - \Lambda)^{-T} \text{diag}(a_1^2, \ldots, a_n^2)(I - \Lambda)^{-1}$

$H \subseteq [m]$ hidden $\leadsto \Sigma_{[n]-H}$ principal submatrix

model: Zariski closure of $\{\Sigma_{[n]-H}|\Lambda, a\}$

Cloning sinks

$\begin{array}{c}
\text{Diagram with arrows pointing to } j_1, j_2
\end{array}$
II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on $[n]$

$X_i, i \in [n]$: jointly Gaussian

$X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j$ where the $\epsilon_j \sim N(0, 1)$ independent

$\sim \Sigma = (I - \Lambda)^{-T} \text{diag}(a_1^2, \ldots, a_n^2)(I - \Lambda)^{-1}$

$H \subseteq [m] \text{ hidden } \sim \Sigma_{[n]-H}$ principal submatrix

model: Zariski closure of $\{\Sigma_{[n]-H} | \Lambda, a\}$

Cloning sinks
II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on \([n]\)

\(X_i, i \in [n]:\) jointly Gaussian

\(X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j\) where the \(\epsilon_j \sim N(0, 1)\) independent

\(\Sigma = (I - \Lambda)^{-T} \text{diag}(a_1^2, \ldots, a_n^2)(I - \Lambda)^{-1}\)

\(H \subseteq [m] \text{ hidden } \sim \Sigma_{[n]-H} \text{ principal submatrix model: Zariski closure of } \{\Sigma_{[n]-H}|\Lambda, a\}\)

Cloning sinks

Model stabilises under cloning sinks (via permuting clones).
Stabilisation for parameterised graphical models

<table>
<thead>
<tr>
<th>undirected</th>
<th>DAG with hidden vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(G) := { (p_{i_1,\ldots,i_n} = \prod_C \theta^C_{i_1,\ldots,i_n}) \subseteq \mathbb{C}^R }$ prod over all cliques C \theta^C \in \mathbb{C}^{R_C}$</td>
<td>discrete $R = \prod_j [r_j]$</td>
</tr>
<tr>
<td>\textit{I: stabilises under increasing r_j for j in independent set}</td>
<td>Gaussian mean 0</td>
</tr>
</tbody>
</table>
Stabilisation for parameterised graphical models

<table>
<thead>
<tr>
<th>undirected</th>
<th>DAG with hidden vars</th>
<th>discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(G) := {(p_{i_1,\ldots,i_n} = \prod_C \theta_C^{i_t} i_1,\ldots,i_n } \subseteq \mathbb{C}^R$</td>
<td>${\Sigma = (I - \Lambda)^{-T}D(I - \Lambda)^{-1}}$</td>
<td>$R = \prod_j [r_j]$</td>
</tr>
<tr>
<td>prod over all cliques C</td>
<td>$\Lambda_{ij} = 0$ if $i \not\rightarrow j$</td>
<td>Gaussian</td>
</tr>
<tr>
<td>$\theta_C \in \mathbb{C}^{RC}$</td>
<td>$M(G) \subseteq \mathbb{C}^{([n]-H)\times([n]-H)}$</td>
<td>mean 0</td>
</tr>
</tbody>
</table>

I: stabilises under increasing r_j for j in independent set

II: stabilises under cloning sinks
Stabilisation for parameterised graphical models

<table>
<thead>
<tr>
<th>undirected</th>
<th>DAG with hidden vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(G) := { (p_{i_1,\ldots,i_n} = \prod_C \theta^C_{i_C})_{i_1,\ldots,i_n} } \subseteq \mathbb{C}^R$</td>
<td>${ (p_{i_1,\ldots,i_n} = \prod_{j \in [n]} \theta_{i_j</td>
</tr>
<tr>
<td>prod over all cliques C</td>
<td>$\forall i \in R_{\text{pa}(j)} : \sum_{ij} \theta_{ij</td>
</tr>
<tr>
<td>$\theta^C \in \mathbb{C}^{R_C}$</td>
<td>hide variables in H</td>
</tr>
</tbody>
</table>

I: stabilises under increasing r_j for j in independent set

II: stabilises under cloning sinks

III: stabilises under cloning sinks?? Yes for trees.

	Gaussian mean 0
	$\{ \sum = (I - \Lambda)^{-T} D (I - \Lambda)^{-1} \}$
	$\Lambda_{ij} = 0 \text{ if } i \not\leftrightarrow j$
	$M(G) \subseteq \mathbb{C}^{([n]-H) \times ([n]-H)}$

$R = \prod_j [r_j]$
<table>
<thead>
<tr>
<th>undirected</th>
<th>DAG with hidden vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(G) := { (p_{i_1,\ldots,i_n} = \prod_C \theta^C_{i_C})_{i_1,\ldots,i_n} } \subseteq \mathbb{C}^R$ prod over all cliques C</td>
<td>${ (p_{i_1,\ldots,i_n} = \prod_{j \in [n]} \theta_{i_j</td>
</tr>
<tr>
<td>$\theta^C \in \mathbb{C}^{RC}$</td>
<td>$\forall i \in \mathbb{R}{\text{pa}(j)} : \sum{i_j} \theta_{i_j</td>
</tr>
<tr>
<td>I: stabilises under increasing r_j for j in independent set</td>
<td>II: stabilises under cloning sinks?? Yes for trees.</td>
</tr>
<tr>
<td>$M(G) := { \Sigma = K^{-1} }$</td>
<td>$\Sigma = (I - \Lambda)^{-T} D (I - \Lambda)^{-1}$</td>
</tr>
<tr>
<td>$K_{ij} = 0$ if $ij \notin E(G)$</td>
<td>$\Lambda_{ij} = 0$ if $i \nrightarrow j$</td>
</tr>
<tr>
<td>$M(G) \subseteq \mathbb{C}^{n \times n}$</td>
<td>$M(G) \subseteq \mathbb{C}^{([n]-H) \times ([n]-H)}$</td>
</tr>
<tr>
<td>stabilisation??</td>
<td>II: stabilises under cloning sinks</td>
</tr>
</tbody>
</table>
Definition
\[C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \text{rk}_{\geq 0} C := \min \{ r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB \} \]
IV: Nonnegative matrix rank

Definition
\[C \in \mathbb{R}_{\geq 0}^{m \times n} \iff \text{rk}_{\geq 0} C := \min \{ r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB \} \]

Very ill-behaved

For all \(n > 3 \) there are \(n \times n \)-matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

[Moitra 2012]
IV: Nonnegative matrix rank

Definition
\[C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \text{rk}_{\geq 0}C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\} \]

Very ill-behaved [Moitra 2012]

For all \(n > 3 \) there are \(n \times n \)-matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

\[M_{r}^{m \times n} := \{A \in \mathbb{R}_{\geq 0}^{m \times n} \mid \text{rk}_{\geq 0}A \leq r\} \]

(positive cone over) mixture of \(r \) copies of independence

\[\partial M_{r}^{m \times n} := \text{topological boundary} \]
Definition
\[C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \text{rk}_{\geq 0} C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\} \]

Very ill-behaved \[\text{[Moitra 2012]}\]
For all \(n > 3 \) there are \(n \times n \)-matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

\[\mathcal{M}_{r}^{m \times n} := \{A \in \mathbb{R}_{\geq 0}^{m \times n} \mid \text{rk}_{\geq 0} A \leq r\} \]
(positive cone over) mixture of \(r \) copies of independence
\[\partial \mathcal{M}_{r}^{m \times n} := \text{topological boundary} \]

Observation/Theorem \[\text{[Kubjas, Robeva, Sturmfels 2013]}\]
EM-algorithm for \(\mathcal{M}_{r}^{m \times n} \) often converges to boundary!
Explicit, quantifier-free expression for \(r = 2 \).
Nonnegative matrix rank, continued

Algebraic boundary
\[\partial M_{m \times n}^r : \text{Zariski closure} \subseteq \mathbb{C}^{m \times n} \]
hypersurface in the variety of rank-\(r\) matrices
Nonnegative matrix rank, continued

Algebraic boundary
\[\partial M_r^{m \times n} : \text{Zariski closure} \subseteq \mathbb{C}^{m \times n} \]
hypersurface in the variety of rank-\(r \) matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for \(m, n \geq 4 \), \(\partial M_3^{m \times n} \) has 2 \(\text{Sym}(m) \times \text{Sym}(n) \)-orbits of irreducible components, parameterised by the following and its transpose:

\[
\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0 \\
* & * & *
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0 & 0 & * & * & * \\
* & * & 0 & * \\
* & * & * & 0 & * \\
* & * & * & * & *
\end{bmatrix}
\]
Nonnegative matrix rank, continued

Algebraic boundary
\[\partial M_{m \times n}^r : \text{Zariski closure} \subseteq \mathbb{C}^{m \times n} \]
hypersurface in the variety of rank-\(r\) matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]
Apart from coordinate hyperplanes, for \(m, n \geq 4\), \(\partial M_{3 \times n}^r\) has 2 \(\text{Sym}(m) \times \text{Sym}(n)\)-orbits of irreducible components, parameterised by the following and its transpose:

\[
\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0 \\
* & * & *
\end{bmatrix}
\quad \begin{bmatrix}
0 & 0 & * & * & * \\
* & * & 0 & * \\
* & * & * & 0 & * \\
* & * & * & *
\end{bmatrix}
\]

Conjecture
This component has a GB of \(4 \times 4\) minors plus \(\binom{m}{3}\) sextics.
Nonnegative matrix rank, continued

Algebraic boundary

$\partial M_{m \times n}^r$: Zariski closure $\subseteq \mathbb{C}^{m \times n}$ hypersurface in the variety of rank-r matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for $m, n \geq 4$, $\partial M_{3 \times n}^3$ has 2 Sym(m) \times Sym(n)-orbits of irreducible components, parameterised by the following and its transpose:

\[
\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0 \\
* & * & * \\
\end{bmatrix}
\quad \begin{bmatrix}
0 & 0 & * & * & * \\
* & * & 0 & * & * \\
* & * & 0 & * \\
* & * & * & 0 & * \\
\end{bmatrix}
\]

Conjecture

This component has a GB of 4×4 minors plus $\binom{m}{3}$ sextics.

Now a **Theorem** due to Eggermont-Horobeț-Kubjas.

But what about higher nonnegative rank??
Conclusions and questions

- Many algebro-statistical models fit into families with a meaningful limit.

- There is an ever growing body of commutative algebra for dealing with these limits up to symmetry.

- Do discrete Bayesian models stabilise under cloning sinks?

- Do undirected Gaussian graphical models exhibit any kind of stabilisation?

- If you have other families of models where you expect stabilisation, come talk to me!
Conclusions and questions

- Many algebro-statistical models fit into families with a meaningful limit.

- There is an ever growing body of commutative algebra for dealing with these limits up to symmetry.

- Do discrete Bayesian models stabilise under cloning sinks?

- Do undirected Gaussian graphical models exhibit any kind of stabilisation?

- If you have other families of models where you expect stabilisation, come talk to me!

Děkuji!