Orthogonally decomposable tensors as semisimple algebras

Jan Draisma
TU Eindhoven and VU Amsterdam

With:
Ada Boralevi (TU/e)
Emil Horobeț (TU/e)
Elina Robeva (Berkeley)

VU, 6 November 2015
Every $A \in \mathbb{C}^{m \times n}$ can be written as $A = \sum_{i=1}^{k} u_i v_i^T$ with nonzero and pairwise perpendicular $u_1, \ldots, u_k \in \mathbb{C}^m$ and similar $v_1, \ldots, v_k \in \mathbb{C}^n$.

(Perpendicular w.r.t. the standard Hermitian forms (\langle . | . \rangle) on $\mathbb{C}^m, \mathbb{C}^n$—but ordinary transposition.)
Singular value decomposition

Every $A \in \mathbb{C}^{m \times n}$ can be written as $A = \sum_{i=1}^{k} u_i v_i^T$ with nonzero and pairwise perpendicular $u_1, \ldots, u_k \in \mathbb{C}^m$ and similar $v_1, \ldots, v_k \in \mathbb{C}^n$.

(Perpendicular w.r.t. the standard Hermitian forms $(\cdot | \cdot)$ on $\mathbb{C}^m, \mathbb{C}^n$—but ordinary transposition.)

The singular values $\|u_i\| \cdot \|v_i\|$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.
Singular value decomposition

Every $A \in \mathbb{C}^{m \times n}$ can be written as $A = \sum_{i=1}^{k} u_i v_i^T$ with nonzero and pairwise perpendicular $u_1, \ldots, u_k \in \mathbb{C}^m$ and similar $v_1, \ldots, v_k \in \mathbb{C}^n$. (Perpendicular w.r.t. the standard Hermitian forms $(.,.)$ on $\mathbb{C}^m, \mathbb{C}^n$—but ordinary transposition.)

The singular values $\|u_i\| \cdot \|v_i\|$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If $m = n$ and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.
Singular value decomposition

Every $A \in \mathbb{C}^{m \times n}$ can be written as $A = \sum_{i=1}^{k} u_i v_i^T$ with nonzero and pairwise perpendicular $u_1, \ldots, u_k \in \mathbb{C}^m$ and similar $v_1, \ldots, v_k \in \mathbb{C}^n$.

(Perpendicular w.r.t. the standard Hermitian forms (.|.) on $\mathbb{C}^m, \mathbb{C}^n$—but ordinary transposition.)

The singular values $\|u_i\| \cdot \|v_i\|$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If $m = n$ and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.

If $m = n$ and A is skew, then $k = 2\ell$ and one can take $v_i = u_{i+\ell}$ for $i \leq \ell$ and $v_i = -u_{i-\ell}$ for $i > \ell$; then $A = \sum_{i=1}^{\ell} (u_i v_i^T - v_i u_i^T)$.
Singular value decomposition

Every $A \in \mathbb{C}^{m \times n}$ can be written as $A = \sum_{i=1}^{k} u_i v_i^T$ with nonzero and pairwise perpendicular $u_1, \ldots, u_k \in \mathbb{C}^m$ and similar $v_1, \ldots, v_k \in \mathbb{C}^n$.

(Perpendicular w.r.t. the standard Hermitian forms $(\cdot | \cdot)$ on $\mathbb{C}^m, \mathbb{C}^n$—but ordinary transposition.)

The singular values $\|u_i\| \cdot \|v_i\|$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If $m = n$ and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.

If $m = n$ and A is skew, then $k = 2\ell$ and one can take $v_i = u_{i+\ell}$ for $i \leq \ell$ and $v_i = -u_{i-\ell}$ for $i > \ell$; then $A = \sum_{i=1}^{\ell} (u_i v_i^T - v_i u_i^T)$.

Question. Which tensors admit orthogonal decompositions?
Orthogonally and unitarily decomposable tensors

Fix fin.-dim. inner product spaces V, V_1, \ldots, V_d over $K \in \{\mathbb{R}, \mathbb{C}\}$.

Fix fin.-dim. inner product spaces V, V_1, \ldots, V_d over $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is **odeco/udeco** if it can be written as $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.
Fix fin.-dim. inner product spaces V, V_1, \ldots, V_d over $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \text{Sym}^d(V) \subseteq V^\otimes d$ is *symmetrically odeco/udeco* if it can be written as $T = \sum_{i=1}^{k} \pm v_{i}^\otimes d$ for nonzero, pairwise perpendicular v_i.
Fix fin.-dim. inner product spaces V, V_1, \ldots, V_d over $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \text{Sym}^{d}(V) \subseteq V^\otimes d$ is *symmetrically odeco/udeco* if it can be written as $T = \sum_{i=1}^{k} \pm v_{i}^\otimes d$ for nonzero, pairwise perpendicular v_{i}.

Example. With $V = \mathbb{R}^{2}$ and $d = 3$ the tensor

$$T = e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_1 + e_1 \otimes e_0 \otimes e_1 + e_1 \otimes e_1 \otimes e_0$$

is symmetrically odeco: $T =$
Fix fin.-dim. inner product spaces V, V_1, \ldots, V_d over $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is **odeco/udeco** if it can be written as $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \text{Sym}^d(V) \subseteq V^\otimes d$ is **symmetrically odeco/udeco** if it can be written as $T = \sum_{i=1}^{k} \pm v_i^\otimes d$ for nonzero, pairwise perpendicular v_i.

Example. With $V = \mathbb{R}^2$ and $d = 3$ the tensor $T = e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_1 + e_1 \otimes e_0 \otimes e_1 + e_1 \otimes e_1 \otimes e_0$ is symmetrically odeco: $T = (e_0 + e_1)^\otimes 3 / 2 + (e_0 - e_1)^\otimes 3 / 2$
Definition. An alternating tensor $T \in \text{Alt}^d V \subseteq V \otimes^d$ is \textit{alternatingly odeco/udeco} if $T = \sum_{i=1}^{k} v_{i1} \wedge \cdots \wedge v_{id}$ for $k \cdot d$ nonzero, pairwise perpendicular vectors v_{11}, \ldots, v_{kd}.

(superpositions of points on the Grassmannian representing pairwise perpendicular d-subspaces of V; in particular $k \leq \lfloor \frac{\dim V}{d} \rfloor$)
Definition. An alternating tensor $T \in \text{Alt}^d V \subseteq V \otimes^d$ is alternately odeco/udeco if $T = \sum_{i=1}^{k} v_{i1} \wedge \cdots \wedge v_{id}$ for $k \cdot d$ nonzero, pairwise perpendicular vectors v_{i1}, \ldots, v_{kd}.

(superpositions of points on the Grassmannian representing pairwise perpendicular d-subspaces of V; in particular $k \leq \lfloor \frac{\dim V}{d} \rfloor$)

Main theorem. For $d \geq 3$ odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

<table>
<thead>
<tr>
<th></th>
<th>$\text{odeco (\mathbb{R})}$</th>
<th>$\text{udeco (\mathbb{C})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>2 (associativity)</td>
<td>3 (semi-associativity)</td>
</tr>
<tr>
<td>ordinary</td>
<td>2 (partial associativity)</td>
<td>3 (partial semi-asso.)</td>
</tr>
<tr>
<td>alternating</td>
<td>2 (Jacobi), 4 (Casimir)</td>
<td>3,4??</td>
</tr>
</tbody>
</table>
Some basic facts

Proposition. The set of odeco/udeco tensors is Euclidean-closed.
Some basic facts

Proposition. The set of odeco/udeco tensors is Euclidean-closed.

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n], \lambda) \mapsto \sum_{i=1}^n \lambda_i v_i^\otimes d$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\text{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in \text{Sym}^d (V) \setminus \{0\} is the set of nonzero sym odeco tensors. \qed
Some basic facts

Proposition. The set of odeco/udeco tensors is Euclidean-closed.

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n], \lambda) \mapsto \sum_{i=1}^n \lambda_i v_i^{\otimes d}$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\text{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in $\text{Sym}^d(V) \setminus \{0\}$ is the set of nonzero sym odeco tensors. \qed

Proposition. For $d \geq 3$ the orthogonal decomposition is unique.

Proof (ordinary case). Contracting $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ with a general tensor in $V_3 \otimes \cdots \otimes V_d$ yields a two-tensor A with distinct nonzero singular values. \qed
Some basic facts

Proposition. The set of odeco/udeco tensors is Euclidean-closed.

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n], \lambda) \mapsto \sum_{i=1}^n \lambda_i v_i^\otimes d$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\text{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in $\text{Sym}^d(V) \setminus \{0\}$ is the set of nonzero sym odeco tensors. □

Proposition. For $d \geq 3$ the orthogonal decomposition is unique.

Proof (ordinary case). Contracting $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ with a general tensor in $V_3 \otimes \cdots \otimes V_d$ yields a two-tensor A with distinct nonzero singular values. □

(This yields an algorithm for orthogonal decomposition—Kolda.)
Further facts

Proposition. An odeco symmetric tensor is symmetrically odeco.
Proof. For $d \geq 3$, use the uniqueness of the decomposition.
□
Further facts

Proposition. An odeco symmetric tensor is symmetrically odeco.

Proof. For $d \geq 3$, use the uniqueness of the decomposition. □

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.
Proposition. An odeco symmetric tensor is symmetrically odeco.
Proof. For $d \geq 3$, use the uniqueness of the decomposition. \qed

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If T is udeco and real, then it is odeco.
Proof. For $d \geq 3$, use the uniqueness of the decomposition. \qed
Further facts

Proposition. An odeco symmetric tensor is symmetrically odeco.

Proof. For \(d \geq 3 \), use the uniqueness of the decomposition. \(\square \)

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If \(T \) is udeco and real, then it is odeco.

Proof. For \(d \geq 3 \), use the uniqueness of the decomposition. \(\square \)

Observation. If \(K = \mathbb{R} \) and \(T = \sum_i v_{i1} \otimes \cdots \otimes v_{id} \) odeco, then for each \(j_0 \) the contraction \(\bigotimes_j V_j \times \bigotimes_j V_j \to \bigotimes_{j \neq j_0} (V_j \otimes V_j) \) maps \((T, T)\) into \(\sum_i (v_{ij_0} | v_{ij_0}) \otimes_{j \neq j_0} v_j \otimes v_j \), which lies in \(\bigotimes_{j \neq j_0} \text{Sym}^2(V_j) \)
Further facts

Proposition. An odeco symmetric tensor is symmetrically odeco.

Proof. For \(d \geq 3 \), use the uniqueness of the decomposition. \(\square \)

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If \(T \) is udeco and real, then it is odeco.

Proof. For \(d \geq 3 \), use the uniqueness of the decomposition. \(\square \)

Observation. If \(K = \mathbb{R} \) and \(T = \sum_i v_{i1} \otimes \cdots \otimes v_{id} \) odeco, then for each \(j_0 \) the contraction \(\bigotimes_j V_j \times \bigotimes_j V_j \rightarrow \bigotimes_{j \neq j_0} (V_j \otimes V_j) \) maps \((T, T)\) into \(\sum_i (v_{ij_0} | v_{ij_0}) \bigotimes_{j \neq j_0} v_j \otimes v_j \), which lies in \(\bigotimes_{j \neq j_0} \text{Sym}^2(V_j) \)

Conjecture (Robeva). This characterises ordinary odeco tensors.
Main theorem for symmetrically odec0 three-tensors

Via the isomorphism $V^\otimes 3 \cong V^* \otimes V^* \otimes V$, a $T \in \text{Sym}^3(V) \subseteq V^\otimes 3$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: $uv = vu$ since $(12)T = T$; and $(uv|w) = (uw|v)$ since $(23)T = T$.
Main theorem for symmetrically odeco three-tensors

Via the isomorphism $V^\otimes 3 \cong V^* \otimes V^* \otimes V$, a $T \in \text{Sym}^3(V) \subseteq V^\otimes 3$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: $uv = vu$ since $(12)T = T$; and $(uv|w) = (uw|v)$ since $(23)T = T$.

This makes V a commutative \mathbb{R}-algebra that decomposes as an orthogonal direct sum of simple ideals.
Main theorem for symmetrically odeco three-tensors

Via the isomorphism $V^\otimes 3 \cong V^* \otimes V^* \otimes V$, a $T \in \text{Sym}^3(V) \subseteq V^\otimes 3$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: $uv = vu$ since $(12)T = T$; and $(uv|w) = (uw|v)$ since $(23)T = T$.

This makes V a commutative \mathbb{R}-algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.
Main theorem for symmetrically odeco three-tensors

Via the isomorphism $V^\otimes 3 \cong V^* \otimes V^* \otimes V$, a $T \in \text{Sym}^3(V) \subseteq V^\otimes 3$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: $uv = vu$ since $(12)T = T$; and $(uv|w) = (uw|v)$ since $(23)T = T$.

This makes V a commutative \mathbb{R}-algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.

Proof. \Rightarrow: If $T = \sum_i u_i^\otimes 3$, then

$$(xy)z = (\sum_i (u_i|x)(u_i|y)u_i)z = \sum_i (u_i|x)(u_i|y)(u_i|z)||u_i||^2 u_i = x(yz)$$
Main theorem for symmetrically odeco three-tensors

Via the isomorphism $V^\otimes 3 \cong V^* \otimes V^* \otimes V$, a $T \in \text{Sym}^3(V) \subseteq V^\otimes 3$ gives rise to a bilinear map $V \times V \rightarrow V$, $(u, v) \mapsto u \cdot v = uv$. Note: $uv = vu$ since $(12)T = T$; and $(uv|w) = (uw|v)$ since $(23)T = T$.

This makes V a commutative \mathbb{R}-algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.

Proof. \Rightarrow: If $T = \sum_i u_i^\otimes 3$, then

$$(xy)z = (\sum_i (u_i|x)(u_i|y)u_i)z = \sum_i (u_i|x)(u_i|y)(u_i|z)||u_i||^2 u_i = x(yz)$$

\Leftarrow may assume (V, \cdot) is simple. Pick x such that $M_x : y \mapsto xy$ is nonzero. Then ker M_x is an ideal, so 0. Define $y \ast z := M_x^{-1}(yz)$. $\Rightarrow (V, \ast)$ is simple, comm, ass, with 1 and compatible $(.|.)$, so $\cong \mathbb{R}$.

\square
Main theorem for ordinary odecod three-tensors

The proof is very similar, except now $T \in U \otimes V \otimes W$ gives rise to a commutative algebra structure on $U \oplus V \oplus W$ with $U \cdot V \subseteq W$, $U \cdot U = \{0\}$, etc., and we are interested only in homogeneous ideals.
Main theorem for ordinary odeco three-tensors

The proof is very similar, except now $T \in U \otimes V \otimes W$ gives rise to a commutative algebra structure on $U \oplus V \oplus W$ with $U \cdot V \subseteq W$, $U \cdot U = \{0\}$, etc., and we are interested only in homogeneous ideals.

Partial associativity means that $(xy)z = x(yz)$ whenever x, y, z are homogeneous and x, z belong to the same space (U, V, W).
Again, $T \in \text{Alt}^3(V)$ gives a bilinear multiplication $(x, y) \mapsto xy$. Now we have $xy = -yx$ and $(xy|z) = -(xz|y)$.
Main theorem for alternatingly odeco three-tensors

Again, $T \in \text{Alt}^3(V)$ gives a bilinear multiplication $(x, y) \mapsto xy$. Now we have $xy = -yx$ and $(xy|z) = -(xz|y)$.

Proposition. T is alternatingly odeco iff (V, \cdot) satisfies the Jacobi identity and furthermore has the property that for each $x, y, z \in V$ the map $C := M_x M_{yz} + M_y M_{zx} + M_z M_{xy}$ centralises all M_u.
Main theorem for alternatingly odeco three-tensors

Again, \(T \in \text{Alt}^3(V) \) gives a bilinear multiplication \((x, y) \mapsto xy\). Now we have \(xy = -yx \) and \((xy|z) = -(xz|y)\).

Proposition. \(T \) is alternatingly odeco iff \((V, \cdot)\) satisfies the **Jacobi identity** and furthermore has the property that for each \(x, y, z \in V \) the map \(C := M_x M_{(yz)} + M_y M_{(zx)} + M_z M_{(xy)} \) centralises all \(M_u \).

Proof. \(\Rightarrow: \) \(V \) decomposes as an orthogonal direct sum of copies of \((\mathbb{R}^3, \times)\), for which the expression above is the Casimir element.
Main theorem for alternatingly odeco three-tensors

Again, $T \in \text{Alt}^3(V)$ gives a bilinear multiplication $(x, y) \mapsto xy$. Now we have $xy = -yx$ and $(xy|z) = -(xz|y)$.

Proposition. T is alternatingly odeco iff (V, \cdot) satisfies the Jacobi identity and furthermore has the property that for each $x, y, z \in V$ the map $C := M_x M_{yz} + M_y M_{zx} + M_z M_{xy}$ centralises all M_u.

Proof. \Rightarrow: V decomposes as an orthogonal direct sum of copies of (\mathbb{R}^3, \times), for which the expression above is the Casimir element.

\Leftarrow: (V, \cdot) is then a compact Lie algebra. Their classification implies that the only simple one for which C is central, is (\mathbb{R}^3, \times). \square
What about udeco three-tensors?

V a complex vector space $\leadsto V^s = \{\text{semilinear functions } V \to \mathbb{C}\}$
What about udeco three-tensors?

V a complex vector space $\leadsto V^s = \{\text{semilinear functions } V \to \mathbb{C}\}$

The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.
What about udeco three-tensors?

V a complex vector space $\hookrightarrow V^s = \{\text{semilinear functions } V \rightarrow \mathbb{C}\}$

The inner product gives a linear isomorphism $V \rightarrow V^s, \ v \mapsto (\cdot | v)$.

$T \in V^\otimes 3$ gives a bi-semilinear product $V \times V \rightarrow V$.
What about udeco three-tensors?

V a complex vector space $\leadsto V^s = \{\text{semilinear functions } V \to \mathbb{C}\}$

The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|\cdot)$.

$T \in V^\otimes 3$ gives a bi-semilinear product $V \times V \to V$.

Proposition. $T \in \text{Sym}^3(V)$ is symmetrically udeco iff the product is semi-associative: $x(y(zu)) = z(y(xu))$ and $(xy)(zu) = (xu)(zy)$.

What about udeco three-tensors?

V a complex vector space $\sim V^s = \{\text{semilinear functions } V \to \mathbb{C}\}$

The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.

$T \in V^\otimes 3$ gives a bi-semilinear product $V \times V \to V$.

Proposition. $T \in \text{Sym}^3(V)$ is symmetrically udeco iff the product is semi-associative: $x(y(zu)) = z(y(xu))$ and $(xy)(zu) = (xu)(zy)$.

We have a similar characterisation for ordinary three-tensors.
What about tensors of order > 3?

Ordinary case. For \(d \geq 4 \), a tensor in \(V_1 \otimes \cdots \otimes V_d \) is odeco/udeco iff its flattening into \((\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)\) is for each partition \(I_1, \ldots, I_e \) of \(\{1, \ldots, d\} \) with at least one \(|I_j| > 1 \).
What about tensors of order > 3?

Ordinary case. For $d \geq 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its flattening into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.
What about tensors of order > 3?

Ordinary case. For $d \geq 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its flattening into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.

Alternating case. For $d \geq 4$, a tensor in $\text{Alt}^d V$ is alternatingly odeco/udeco iff all its contractions into $\text{Alt}^{d-1} V$ are.
What about tensors of order > 3?

Ordinary case. For $d \geq 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its flattening into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.

Alternating case. For $d \geq 4$, a tensor in $\text{Alt}^d V$ is alternatingly odeco/udeco iff all its contractions into $\text{Alt}^{d-1} V$ are.

This proves the main theorem, except ...
Recall

Main theorem. For \(d \geq 3 \) odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

<table>
<thead>
<tr>
<th></th>
<th>(odeco (\mathbb{R}))</th>
<th>(udeco (\mathbb{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>2 (associativity)</td>
<td>3 (semi-associativity)</td>
</tr>
<tr>
<td>ordinary</td>
<td>2 (partial associativity)</td>
<td>3 (partial semi-asso.)</td>
</tr>
<tr>
<td>alternating</td>
<td>2 (Jacobi), 4 (Casimir)</td>
<td>3,4??</td>
</tr>
</tbody>
</table>
Main theorem. For $d \geq 3$ odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

<table>
<thead>
<tr>
<th></th>
<th>odeco (\mathbb{R})</th>
<th>udeco (\mathbb{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>2 (associativity)</td>
<td>3 (semi-associativity)</td>
</tr>
<tr>
<td>ordinary</td>
<td>2 (partial associativity)</td>
<td>3 (partial semi-asso.)</td>
</tr>
<tr>
<td>alternating</td>
<td>2 (Jacobi), 4 (Casimir)</td>
<td>3,4??</td>
</tr>
</tbody>
</table>

There is a 280-dimensional space of cubic equations for udeco tensors in $\text{Alt}^3 \mathbb{C}^6$, one of which looks like:

$$
t_{1,4,5}t_{2,3,4}\bar{t}_{1,3,5} - t_{1,3,4}t_{2,4,5}\bar{t}_{1,3,5} + t_{1,2,4}t_{3,4,5}\bar{t}_{1,3,5} + t_{1,4,6}t_{2,3,4}\bar{t}_{1,3,6} - t_{1,3,4}t_{2,4,6}\bar{t}_{1,3,6} + t_{1,2,4}t_{3,4,6}\bar{t}_{1,3,6} - t_{1,4,6}t_{2,4,5}\bar{t}_{1,5,6} + t_{1,4,5}t_{2,4,6}\bar{t}_{1,5,6} - t_{1,2,4}t_{4,5,6}\bar{t}_{1,5,6} + t_{2,4,6}t_{3,4,5}\bar{t}_{3,5,6} - t_{2,4,5}t_{3,4,6}\bar{t}_{3,5,6} + t_{2,3,4}t_{4,5,6}\bar{t}_{3,5,6}$$

...but the algebra has *no* polynomial identities of degree 3 :-(