POLARISATION IN INVARIANT THEORY

JAN DRAISMA

INVARIANT THEORY

Set-up:
- \(V \) a finite-dimensional vector space over a field \(K \)
- \(G \) a group acting by linear maps on \(V \)
- \(K[V] \) the ring of polynomials on \(V \)
- \(G \) acts on \(K[V] \) by \(g f := f \circ g^{-1} \)
- \(K[V]^G \) the algebra of (polynomial) \(G \)-invariants on \(V \)

Example 0.1. \(V := \mathbb{K}^n \), \(G := \{ g \in \text{GL}_n \mid g^T g = I \} \); then \(K[V]^G = K[x_1, \ldots, x_n]^G = K[q] \), where \(q = x_1^2 + \ldots + x_n^2 \).

Invariants help to distinguish \(G \)-orbits in \(V \):
- If \(x, y \in V \) and \(f \in K[V]^G \) satisfies \(f(x) \neq f(y) \), then \(Gx \) and \(Gy \) are distinct orbits.
- For finite groups, distinct orbits are separated by invariant polynomials, but this is not true for general groups.

Two problems in invariant theory

Generators. Given \(G \) and its action on \(V \), determine generators of \(K[V]^G \).

Remark 0.2. • \(K[V]^G \) may not be a finitely generated algebra; this is the negative answer to Hilbert’s 14th problem (Nagata 1959).
• If the image of \(G \) in \(\text{GL}(V) \) is “reductive”, then \(K[V]^G \) is finitely generated (Hilbert, 1890), and one can give good upper bounds on the degrees of generators (Derksen, 2001).

Separating invariants. Given \(G \) and its action on \(V \), determine a finite subset of \(K[V]^G \) with the same “separating power” as the full algebra \(K[V]^G \). Such a set is called a finite separating system of invariants.

Lemma 0.3. A finite separating system of invariants always exists.

Proof. Consider the equivalence relation on \(V \) given by

\[\{(v, w) \mid f(v) = f(w) \text{ for all } f \in K[V]^G \}. \]

This is the zero set of the ideal \(I \) generated by the polynomials \(f(v) - f(w) \), where \(f \) runs over all elements of \(K[V]^G \). By the fact that \(K[V \times V] \) is Noetherian (i.e., every ascending chain of ideals stabilises), \(I \) is already generated by a finite number of the \(f(v) - f(w) \). The corresponding \(f \) form a finite separating system. \(\square \)
Note that a finite set of invariants has the same separating power as the algebra it generates. So we may also interpret the lemma as: there always exists a finitely generated algebra of invariants that has the same separating power as the full algebra $K[V]^G$.

Polarisation

Now suppose that $V = M^p$, where

- M is a finite-dimensional vector space on which G acts linearly, and
- G acts diagonally on M^p.

In general one cannot construct all invariants on M^p from invariants on M^q, as follows. Suppose that $f \in K[M^q]^G$ and let π be any linear map $K^p \rightarrow K^q$ by

$$
\pi(m_1, \ldots, m_p) = (\sum_{j=1}^p \pi_{1,j} m_j, \ldots, \sum_{j=1}^p \pi_{q,j} m_j).
$$

Clearly, this map is G-equivariant: $\pi(gv) = g\pi(v)$ for $v \in M^p$. Hence $f \circ \pi$ is an invariant on M^p, which we will call a polarisation of f to M^p.

Definition 0.5. Let A be a subalgebra of $K[M^q]$. The subalgebra of $K[M^p]$ generated by all polarisations of elements of A to M^p (i.e., by all functions of the form $f \circ \pi$ where $f \in A$ and $\pi : K^p \rightarrow K^q$) is called the polarisation of A to M^p.

Example 0.6. Recall Example 0.1. Then the polynomial β on $(K^n)^2$ given by

$$
\beta(x, y) := q(x + y) - q(x) - q(y)
$$

is a polarisation of q to 2 copies of K^n: the bilinear form associated to q.

Applications of polarisation

Generating invariants. The following theorem is due to Weyl.

Theorem 0.7 (Weyl, 1939). Suppose that char $K = 0$. Then $K[M^p]^G$ is the polarisation of $K[M^q]^G$ to M^p for all $p \geq \dim M$.

In other words, one needs “only” know the invariants of G on $\dim M$ copies of M to construct the invariants of G on more copies. Compare this to example 0.4.

The theorem is not true in positive characteristic, not even if G is finite and its order is not a multiple of char K.

Example 0.8. (Kemper, Wehlau). Suppose that K has characteristic 3 and contains a primitive 4-th root of unity. Let G be the subgroup of GL_1 generated by ω, acting on $M = K$ by multiplication. Then $K[M]^G = K[x]^G = K[x^4].$ Now x^2y^2 is an invariant on M^2, but in $(ax + by)^4$ the monomial x^2y^2 does not occur; this easily implies that x^2y^2 does not lie in the polarisation of $K[x^4]$ to 2 copies.
Remark 0.9. Friedrich Knop has proved a generalisation of Weyl’s theorem to positive characteristic, which ensures that the invariants on \(M^p \) up to a certain degree can be obtained from invariants on \(M^{\dim M} \) by polarisation. Combining this with a bound on degrees of invariants of finite groups, one finds a generalisation of Weyl’s theorem to finite \(G \) and \(\text{char} \ K \) not dividing \(|G| \).

Separating invariants. In contrast, we have

Theorem 0.10 (Kemper, Wehlau, Draisma, 2005). If \(A \) is a separating subalgebra of \(K[M^{\dim M}]^G \), then the polarisation of \(A \) to \(M^p \) with \(p \geq \dim M \) is separating.

This theorem is a consequence of the following lemma (by taking “having the same value under all invariants” as equivalence relations).

Lemma 0.11. Suppose \(p, q \geq \dim M \) and let \(\sim \) and \(\equiv \) be equivalence relations on \(M^p \) and \(M^q \), respectively, such that
\[
\forall v, w \in M^p, \pi : K^p \to K^q, \quad v \sim w \Rightarrow \pi v \equiv \pi w,
\]
and
\[
\forall v, w \in M^q, \pi : K^q \to K^p, \quad v \equiv w \Rightarrow \pi v \sim \pi w.
\]
Now suppose that \(v, w \in M^p \) are such that \(\pi v \equiv \pi w \) for all \(\pi : K^p \to K^q \). Then \(v \sim w \).

Proof. View \(M^p \) and \(M^q \) as \(K^p \otimes M \) and \(K^q \otimes M \). Choose linearly independent subspaces \(A, B, C \) of \(K^p \) with

1. \(v \in (A + B) \otimes M \) (write \(v = v_A + v_B \) accordingly),
2. \(w \in (B + C) \otimes M \) (write \(w = w_B + w_C \) accordingly) and
3. \(A + B \) and \(B + C \) have dimension at most \(q \).

Now let \(\pi : K^p \to K^q \) and \(\sigma : K^q \to K^p \) be such that \(\sigma \pi \) is the identity on \(A + B \) and zero on \(C \). Then we find
\[
v = \sigma \pi v \sim \sigma \pi w = w_B.
\]
Similarly, using a second pair \((\sigma, \pi) \), we find \(w \sim v_B \). But now let \(\pi : K^p \to K^q \) and \(\sigma : K^q \to K^p \) be a third pair such that \(\sigma \pi \) is the identity on \(B \) and zero on \(A + C \). Then we find
\[
v_B = \sigma \pi v \sim \sigma \pi w = w_B,
\]
and we are done. \(\square \)

The null-cone. The null-cone \(N(M^p) \) in \(M^p \) is the set of elements of \(V \) that cannot be separated from 0 by invariants.

Example 0.12. Suppose that \(\text{SL}_n \times \text{SL}_n \) acts by left-and-right multiplication on \(M = M_n \).

- The null-cone \(N(M) \) consists of the singular matrices: these are the ones that cannot be distinguished from 0 by the det.
- The null-cone \(N(M^p) \) for \(p > 1 \) has precisely \(n \) irreducible components, namely:
 \[
 C_k := \{(A_1, \ldots, A_p) \in M^p \mid \exists k \text{-dimensional } U : \dim \sum_i A_i U < k \}.
 \]

Theorem 0.13 (Bürgin, Draisma, 2005). The function \(p \mapsto \text{"the number of irreducible components of } N(M^p) \)" is ascending and stabilises at some \(p \leq \dim M \).
Remark 0.14. For reductive groups in characteristic zero, this was first observed by Kraft and Wallach (2004).

Proof. The stabilising part is the hardest. Set \(q := \dim M \). Consider the map

\[\Psi : \text{Hom}(K^q, K^p) \times M^q \to M^p, \quad (\pi, v) := \pi v. \]

Verify:

1. \(\Psi \) maps \(\text{Hom}(K^q, K^p) \times N(M^q) \) into \(N(M^p) \),
2. \(\Psi \) maps \(\text{Hom}(K^q, K^p) \times N(M^q) \) onto \(N(M^p) \) (here we need \(q = \dim M \)), and
3. the number of irreducible components of \(\text{Hom}(K^q, K^p) \times N(M^q) \) equals the number of irreducible components of \(N(M^q) \).

\(\square \)