Stabilisation in algebra, geometry, and combinatorics

Jan Draisma
TU Eindhoven and VU Amsterdam (→ Bern)

SIAM DM 16, Atlanta
Central question

Given an infinite collection \((X_n)_n\) of algebro-geometric structures, are they characterised by finitely many among them?
Central question

Given an infinite collection \((X_n)_n\) *of algebro-geometric structures, are they characterised by finitely many among them?*

n runs through \(\mathbb{N}\), or through all finite sets or trees, or . . .

have maps \(X_n \to X_m\) that propagate structure
Central question

Given an infinite collection \((X_n)_n\) of algebro-geometric structures, are they characterised by finitely many among them?

\(n\) runs through \(\mathbb{N}\), or through all finite sets or trees, or . . .

have maps \(X_n \rightarrow X_m\) that propagate structure

Topic 1 (Gaussian two-factor model)
\[X_n := \{SS^T + D \mid S \in \mathbb{R}^{n \times 2}, D \text{ diag} > 0\}\]

any \(\{i_1 < \ldots < i_m\} \subseteq \{1, \ldots, n\}\) gives a map \(X_n \rightarrow X_m\)
Central question

Given an infinite collection \((X_n)_n\) of algebro-geometric structures, are they characterised by finitely many among them?

\(n\) runs through \(\mathbb{N}\), or through all finite sets or trees, or . . .

have maps \(X_n \to X_m\) that propagate structure

Topic 1 (Gaussian two-factor model)

\(X_n := \{ SS^T + D \mid S \in \mathbb{R}^{n \times 2}, D \text{ diag} > 0\}\)

any \(\{i_1 < \ldots < i_m\} \subseteq \{1, \ldots, n\}\) gives a map \(X_n \to X_m\)

\(\Sigma \in \mathbb{R}^{n \times n}\), PD, is in \(X_n\) iff all \(6 \times 6\) principal submatrices are in \(X_6\).

\(X_n\) is given by polynomial eqs and ineqs; we will focus on the eqs.
Theorem [Hilbert, Math. Ann. 1890]

For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses Dickson’s Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_\geq 0^n \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_{\geq 0}^n$
(Non-)Noetherianity of rings

Theorem [Hilbert, Math. Ann. 1890]
For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses Dickson’s Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^n \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_{\geq 0}^n$

Theorem [Cohen, J. Alg 1967; Aschenbrenner-Hillar, TAMS 2007]
For every finite set S, let I_S be an ideal in $R_S := K[x_i \mid i \in S]$, such that any injection $\sigma : S \rightarrow T$ maps I_S into I_T via $x_i \mapsto x_{\sigma(i)}$. Then I_\bullet is generated by $I_\emptyset, \ldots, I_{[n_0]}$ for some n_0.

Sym(S) acts on I_S, and $S \mapsto R_S$ is an FI-algebra.

uses Higman’s Lemma: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_{\geq 0}^\ast \Rightarrow \exists i < j : \alpha_i \leq \alpha_j$
(Non-)Noetherianity of rings

For a field K, any ideal in $K[x_1, \ldots, x_n]$ is finitely generated.

uses *Dickson’s Lemma*: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_n^\geq \Rightarrow \exists i < j : \alpha_j - \alpha_i \in \mathbb{Z}_n^\geq$

For every finite set S, let I_S be an ideal in $R_S := K[x_i \mid i \in S]$, such that any injection $\sigma : S \rightarrow T$ maps I_S into I_T via $x_i \mapsto x_{\sigma(i)}$. Then I_* is generated by $I_\emptyset, \ldots, I_{[n_0]}$ for some n_0.

Sym(S) acts on I_S, and $S \mapsto R_S$ is an FI-algebra.

uses *Higman’s Lemma*: $\alpha_1, \alpha_2, \ldots \in \mathbb{Z}_n^\ast \Rightarrow \exists i < j : \alpha_i \leq \alpha_j$

same thm for $K[x_{ij} \mid i \in S, j \in [k]]$ but not for $K[x_{ij} \mid i, j \in S]$
Topological Noetherianity

Topic 1, continued
[Drton-Sturmfels-Sullivant, *PTRF* 2007]

\[X_n \subseteq \mathbb{R}^{n \times n} \]
2-factor model, vanishing ideal \[I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]] \]
Topological Noetherianity

Topic 1, continued [Drton-Sturmfels-Sullivant, *PTRF* 2007]

$X_n \subseteq \mathbb{R}^{n \times n}$ 2-factor model, vanishing ideal $I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]]$

$x_{ij} - x_{ji} \in I_n$ for $n \geq 2$

off-diagonal 3×3-subdeterminants $\in I_n$ for $n \geq 6$

$\sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi) \pi \cdot x_{12} x_{23} x_{34} x_{45} x_{51} \in I_n$ for $n \geq 5$
Topological Noetherianity

Topic 1, continued
[Drton-Sturmfels-Sullivant, *PTRF* 2007]

\[X_n \subseteq \mathbb{R}^{n \times n} \text{ 2-factor model, vanishing ideal } I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]] \]

\[x_{ij} - x_{ji} \in I_n \text{ for } n \geq 2 \]

off-diagonal \(3 \times 3 \)-subdeterminants \(\in I_n \) for \(n \geq 6 \)

\[\sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi) \pi \cdot x_{12}x_{23}x_{34}x_{45}x_{51} \in I_n \text{ for } n \geq 5 \]

Theorem

These generate \(I_n \) for all \(n \geq 6 \) via injections \([6] \rightarrow [n]\).
Topological Noetherianity

Topic 1, continued [Drton-Sturmfels-Sullivant, *PTRF* 2007]

\[X_n \subseteq \mathbb{R}^{n \times n} \text{ 2-factor model, vanishing ideal } I_n \subseteq \mathbb{R}[x_{ij} \mid i, j \in [n]] \]

\[x_{ij} - x_{ji} \in I_n \text{ for } n \geq 2 \]

off-diagonal \(3 \times 3\)-subdeterminants \(\in I_n\) for \(n \geq 6\)

\[\sum_{\pi \in \mathrm{Sym}(n)} \text{sgn}(\pi) \pi \cdot x_{12}x_{23}x_{34}x_{45}x_{51} \in I_n \text{ for } n \geq 5 \]

These generate \(I_n\) for all \(n \geq 6\) via injections \([6] \rightarrow [n]\).

Replacing 2 by \(k\) we know only weaker stabilisation:

\(\forall k \exists n_0\) such that via injections \([n_0] \rightarrow [n]\) the ideal \(I_{n_0}\) generates \(I_n\) up to radical.
Instances of stabilisation

(using Noetherianity up to symmetry)
Definition

The *rank* of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of *product states* $v_1 \otimes \cdots \otimes v_n$.
Topic 2: bounded-rank tensors

Definition
The *rank* of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of *product states* $v_1 \otimes \cdots \otimes v_n$.

Theorem [D-Kuttler, Duke 2014]
For any fixed k there is a d, independent of n and the V_i, such that \{T of rank $\leq k$\} is defined by polynomials of degree $\leq d$.
Topic 2: bounded-rank tensors

Definition
The rank of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of product states $v_1 \otimes \cdots \otimes v_n$.

Theorem
[D-Kuttler, Duke 2014]
For any fixed k there is a d, independent of n and the V_i, such that \{T of rank $\leq k$\} is defined by polynomials of degree $\leq d$.

Table
\begin{array}{c|c|c|c|c|c}
 k & 0 & 1 & 2 \, \dagger & 3 \, \star & 4 \\
 \hline
 d & 1 & 2 & 3 \, \dagger & 4 \, \star & \geq 9 \star
\end{array}

\dagger [Landsberg-Manivel, 2004]
\star [Qi, 2014]
\bullet [Strassen, 1983]
Topic 2: bounded-rank tensors

Definition
The \(\text{rank} \) of a tensor \(T \in V_1 \otimes \cdots \otimes V_n \) is the minimal number of terms in any expression of \(T \) as a sum of \textit{product states} \(v_1 \otimes \cdots \otimes v_n \).

Theorem \[\text{D-Kuttler, Duke 2014} \]
For any fixed \(k \) there is a \(d \), \textit{independent of } n \text{ and the } V_i, \text{ such that } \{ T \text{ of rank } \leq k \} \text{ is defined by polynomials of degree } \leq d. \]

Table
\[
\begin{array}{c|cccc}
 k & 0 & 1 & 2 & 3^\dagger & 4^\bullet \\
d & 1 & 2 & 3^\dagger & 4^\bullet & \geq 9^* \\
\end{array}
\]

\[\dagger \text{ [Landsberg-Manivel, 2004]} \]
\[\bullet \text{ [Qi, 2014]} \]
\[\ast \text{ [Strassen, 1983]} \]

relevant maps from \(X(V_1, \ldots, V_n) = \{ \text{rank } \leq k \} \subseteq V_1 \otimes \cdots \otimes V_k \) into \(X(W_1, \ldots, W_n) \) or \(X(V_1, \ldots, V_{n-1} \otimes V_n) \) or \(X(V_{\pi(1)}, \ldots, V_{\pi(n)}) \)
Topic 2: bounded-rank tensors

Definition
The *rank* of a tensor $T \in V_1 \otimes \cdots \otimes V_n$ is the minimal number of terms in any expression of T as a sum of *product states* $v_1 \otimes \cdots \otimes v_n$.

Theorem [D-Kuttler, *Duke* 2014]
For any fixed k there is a d, independent of n and the V_i, such that
\[
\{T \text{ of rank } \leq k\} \text{ is defined by polynomials of degree } \leq d.
\]

Table

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>3\dagger</td>
<td>4\bullet</td>
<td>$\geq 9^*$</td>
</tr>
</tbody>
</table>

\dagger [Landsberg-Manivel, 2004]
\bullet [Qi, 2014]
* [Strassen, 1983]

relevant maps from $X(V_1, \ldots, V_n) = \{\text{rank } \leq k\} \subseteq V_1 \otimes \cdots \otimes V_k$ into $X(W_1, \ldots, W_n)$ or $X(V_1, \ldots, V_{n-1} \otimes V_n)$ or $X(V_{\pi(1)}, \ldots, V_{\pi(n)})$

Snowden has a stabilisation result for higher syzygies for $k = 1$.
Second hypersimplex

\[P_n := \{ v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n \} \]
Second hypersimplex

\[P_n := \{v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n\} \]

Theorem [De Loera-Sturmfels-Thomas, *Combinatorica* 1995]

\(P_n \) has a Markov basis consisting of moves \(v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj} \)
and \(v_{ij} \rightarrow v_{ji} \) for \(i, j, k, l \) distinct; i.e., if \(\sum_{ij} c_{ij}v_{ij} = \sum_{ij} d_{ij}v_{ij} \) with \(c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0} \), then the expressions are connected by such moves.
Second hypersimplex

$P_n := \{v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n\}$

Theorem [De Loera-Sturmfels-Thomas, *Combinatorica* 1995]

P_n has a Markov basis consisting of moves $v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj}$ and $v_{ij} \rightarrow v_{ji}$ for i, j, k, l distinct; i.e., if $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$ with $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves.

Theorem [D-Eggermont-Krone-Leykin *Algebra & Number Th* 2016]

Any sequence $(P_n \subseteq \mathbb{Z}^n)_n$ of lattice point configurations such that $P_n = \text{Sym}(n)P_{n-1}$ for $n \gg 0$ admits a sequence $(M_n)_n$ of Markov bases such that $M_n = \text{Sym}(n)M_{n-1}$ for $n \gg 0$.
Topic 3: Markov bases

Second hypersimplex

\[P_n := \{ v_{ij} = e_i + e_j \mid 1 \leq i \neq j \leq n \} \]

Theorem [De Loera-Sturmfels-Thomas, Combinatorica 1995]

\(P_n \) has a Markov basis consisting of moves \(v_{ij} + v_{kl} \rightarrow v_{il} + v_{kj} \)

and \(v_{ij} \rightarrow v_{ji} \) for \(i, j, k, l \) distinct; i.e., if \(\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij} \) with \(c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0} \), then the expressions are connected by such moves.

Theorem [D-Eggermont-Krone-Leykin Algebra & Number Th 2016]

Any sequence \((P_n \subseteq \mathbb{Z}^n)_n \) of lattice point configurations such that \(P_n = \text{Sym}(n)P_{n-1} \) for \(n \gg 0 \) admits a sequence \((M_n)_n \) of Markov bases such that \(M_n = \text{Sym}(n)M_{n-1} \) for \(n \gg 0 \).

(Also true for \(P_n \subseteq \mathbb{Z}^{k \times n} \), considered a subset of \(\mathbb{Z}^{k \times (n+1)} \) by adding a zero column. We also have an algorithm for computing \((M_n)_n \).)
M a compact manifold
for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$
for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$
dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.
Topic 4: homological stability

M a compact manifold
for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$
for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$
dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.

Theorem [Church, *Invent. Math.* 2012]
Finitely many of these cohomology groups generate the other ones via these maps.
M a compact manifold
for a finite set S define $C_S(M) := \{(p_i)_{i \in S} \mid p_i \neq p_j \text{ if } i \neq j\} \subseteq M^S$
for any injection $S \subseteq T$ have map $C_T(M) \to C_S(M)$
dually: $H^d(C_S(M), \mathbb{Q}) \to H^d(C_T(M), \mathbb{Q})$.

Theorem [Church, *Invent. Math.* 2012]
Finitely many of these cohomology groups generate the other ones via these maps.

*Among other things, this implies that the Sym(S)-character of $H^d(C_S(M), \mathbb{Q})$ is constant for $|S| \gg 0$.

Fix field K. For a finite set S and a natural number d let $X_{d,E} \subseteq \text{Gr}(d, K^E)$ be a Zariski-closed subset, such that:

1. deletion $\text{Gr}(d, K^E) \rightarrow \text{Gr}(d, K^{E-i})$ maps $X_{d,E}$ into $X_{d,E-i}$;
2. contraction $\text{Gr}(d, K^E) \rightarrow \text{Gr}(d-1, K^{E-i})$ maps $X_{d,E}$ to $X_{d-1,E-i}$;
3. $X_{d,E}$ is invariant under $\text{Sym}(E)$.
Fix field K. For a finite set S and a natural number d let $X_{d,E} \subseteq \text{Gr}(d, K^E)$ be a Zariski-closed subset, such that:

1. deletion $\text{Gr}(d, K^E) \to \text{Gr}(d, K^{E-i})$ maps $X_{d,E}$ into $X_{d,E-i}$;
2. contraction $\text{Gr}(d, K^E) \to \text{Gr}(d - 1, K^{E-i})$ maps $X_{d,E}$ to $X_{d-1,E-i}$;
3. $X_{d,E}$ is invariant under $\text{Sym}(E)$.

Question Is $X_{\cdot,\cdot}$ determined by finitely many $X_{d,E}$?
Fix field \(K \). For a finite set \(S \) and a natural number \(d \) let \(X_{d,E} \subseteq \text{Gr}(d, K^E) \) be a Zariski-closed subset, such that:

1. deletion \(\text{Gr}(d, K^E) \rightarrow \text{Gr}(d, K^{E-i}) \) maps \(X_{d,E} \) into \(X_{d,E-i} \);
2. contraction \(\text{Gr}(d, K^E) \rightarrow \text{Gr}(d-1, K^{E-i}) \) maps \(X_{d,E} \) to \(X_{d-1,E-i} \);
3. \(X_{d,E} \) is invariant under \(\text{Sym}(E) \).

Question Is \(X_{\bullet, \bullet} \) determined by finitely many \(X_{d,E} \)?

Remark
For finite \(K \) this is the matroid minor theorem (Geelen-Gerards-Whittle).
For infinite \(K \), the MMT does not hold, but the above might.
Grassmannians

Gr\textsubscript{k}(V) is a variety parameterising \(k \)-dimensional subspaces of \(V \). It is \textit{functorial} in \(V \), and the “Hodge dual” \(\wedge^k V \to \wedge^{n-k} V^* \) with \(\dim V = n \) maps \(\text{Gr}_k(V) \to \text{Gr}_{n-k}(V^*) \).
Grassmannians
Gr$_k$(V) is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the “Hodge dual” $\wedge^k V \rightarrow \wedge^{n-k} V^*$ with dim V = n maps Gr$_k$(V) \rightarrow Gr$_{n-k}$(V*).

A sequence X_0, X_1, X_2, \ldots of rules $V \mapsto X_k(V) \subseteq \wedge^k(V)$ satisfying these two properties is called a Plücker variety.
Grassmannians

Gr$_k$(V) is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the “Hodge dual” $\bigwedge^k V \to \bigwedge^{n-k} V^*$ with dim V = n maps Gr$_k$(V) → Gr$_{n-k}$(V*).

A sequence X_0, X_1, X_2, \ldots of rules $V \mapsto X_k(V) \subseteq \bigwedge^k(V)$ satisfying these two properties is called a Plücker variety.

Construction of new Plücker varieties
tangential variety, secant variety, etc.
Grassmannians

$\text{Gr}_k(V)$ is a variety parameterising k-dimensional subspaces of V. It is functorial in V, and the “Hodge dual” $\wedge^k V \to \wedge^{n-k} V^*$ with $\dim V = n$ maps $\text{Gr}_k(V) \to \text{Gr}_{n-k}(V^*)$.

A sequence X_0, X_1, X_2, \ldots of rules $V \mapsto X_k(V) \subseteq \wedge^k(V)$ satisfying these two properties is called a Plücker variety.

Construction of new Plücker varieties
tangential variety, secant variety, etc.

Theorem

[\text{D-Eggermont Crelle} 201?]

For bounded Plücker varieties, $(X_k(K^n))_{k,n-k}$ stabilises.

(For $X = \text{Gr}$, $X_\infty = \textit{Sato’s Grassmannian} \subseteq \textit{dual infinite wedge}.$)
Stabilisation in other areas

Algebraic statistics

families of graphical models where the graph grows

[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont, …]
Stabilisation in other areas

Algebraic statistics
families of graphical models where the graph grows
[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont, ...]

Commutative algebra and representation theory
higher syzygies, sequences of modules
[Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]
Stabilisation in other areas

Algebraic statistics

Families of graphical models where the graph grows

[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]

Commutative algebra and representation theory

Higher syzygies, sequences of modules

[Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]

Thank you.