Tropical Brill-Noether theory

Jan Draisma
Eindhoven University of Technology

Meeting of the Swedish Mathematical Society, 10 June 2011
The B(aker)-N(orin) game on graphs

Requirements
finite, undirected graph Γ
d ≥ 0 chips
natural number r

Rules
B puts d chips on Γ
N demands $\geq r_v \geq 0$ chips at v with $\sum_v r_v = r$
B wins iff he can fire to meet N’s demand
Brill-Noether theorems for graphs

\[g := e(\Gamma) - v(\Gamma) + 1 \text{ genus of } \Gamma \]
\[\rho := g - (r + 1)(g - d + r) \]

Conjecture (Matthew Baker)
1. \(\rho \geq 0 \Rightarrow \text{B has a winning starting position.} \)
2. \(\rho < 0 \Rightarrow \text{B may not have one, depending on } \Gamma. \)
 \((\forall g \exists \Gamma \forall d, r : \rho < 0 \Rightarrow \text{Brill loses.}) \)

Theorem (Matthew Baker)
1. is true if B may put chips at rational points of edges.
 \((\text{uses sophisticated algebraic geometry}) \)

Theorem (Cools-D-Payne-Robeva)
2. is true.
 \((\text{implies sophisticated algebraic geometry}) \)
Chip dragging on graphs

Simultaneously moving all chips along edges, with zero net movement around every cycle.

Lemma
1. Chip dragging is realisable by chip firing.
2. W.l.o.g. B drags instead of firing.

Example 1: Γ a tree
\[\rho = g - (r+1)(g-d+r) = -(r+1)(-d+r) \]
B wins \(\iff \rho \geq 0 \iff d \geq r \)

Example 2: a hyperelliptic graph
\(d = 2, r = 1 \)
Who wins?
The B(rill)-N(oether) game on curves

Requirements
compact Riemann surface X
d chips
natural number r

Rules
B puts d chips on X
N demands $\geq r_x \geq 0$ chips at x with $\sum_x r_x = r$
B wins iff he can drag to meet N’s demand
Chip dragging on curves

Simultaneously moving chips c along paths $\gamma_c : [0, 1] \to X$, such that $\sum_c \langle \omega |_{\gamma(t), \gamma'_c(t)} \rangle = 0$ for all holomorphic 1-forms ω on X.

Lemma

$D = \sum_c [\gamma_c(0)]$ initial position

$E = \sum_c [\gamma_c(1)]$ final position

$\iff E - D$ is divisor of meromorphic function on X

drag-equivalence = linear equivalence

Example: torus

only one holomorphic 1-form: dz

condition: $\sum_c \gamma'_c(t) = 0$

when does B win?
Dimension count

\[\omega_1, \ldots, \omega_g \text{ basis of holomorphic 1-forms} \]
\[\mathbf{x} = (x_1, \ldots, x_d) \in X \times \cdots \times X \]
\[v_i \neq 0 \text{ tangent vector at } x_i \]
\[\leadsto \text{ matrix } A_{\mathbf{x}} = (\langle \omega_i, v_j \rangle)_{ij} \in \mathbb{C}^{g \times d} \]
\[(c_1 v_1, \ldots, c_d v_d) \text{ infinitesimal dragging direction } \Rightarrow A(c_1, \ldots, c_d)^T = 0 \]

\[\mathbf{x} \text{ winning for } B \Rightarrow \]
\[\text{dragging } \mathbf{x} \text{ fills } \geq r\text{-dimensional variety} \]
\[\text{where } \ker A \text{ is } \geq r\text{-dimensional} \]

\# conditions on \(g \times d \)-matrix to have \(\geq r\)-dimensional kernel: \(r(g - d + r) \)

for B to have a winning position, “need” \(d - r(g - d + r) \geq r \)
\[\iff \rho = g - (r + 1)(g - d + r) \geq 0 \]
Brill-Noether theorems for curves

Theorem (Meis 1960, Kempf 1971, Kleiman-Laksov 1972)
\(\rho \geq 0 \Rightarrow B \) has a winning position.

Theorem (Griffiths-Harris 1980)
1. \(\rho < 0 \Rightarrow B \) may lose, depending on \(X \).
(\(\forall g \ \exists X \ \forall d, r : \rho < 0 \Rightarrow B \) loses.)

2. \(\rho \geq 0 \) and \(X \) general
\(\Rightarrow \rho = \dim \{ \text{winning positions modulo dragging} \} \)

3. \(\rho = 0 \) and \(X \) general
\(\Rightarrow \# = \# \) standard tableaux of shape
\((r + 1) \times (g - d + r)\) with entries 1, 2, \ldots, g
Baker’s Specialisation Lemma

\(\mathcal{X} \) curve family over \(\mathbb{C}[[t]] \)
(proper, flat, regular scheme)
generic fibre \(\mathcal{X}_{\mathbb{C}((t))} \) smooth curve \(X \)
special fibre \(\mathcal{X}_{\mathbb{C}} = X_1 \cup \ldots \cup X_s \)
\(X_i \) smooth, intersections simple nodes
\(\leadsto \) dual graph \(\Gamma \) on \(\{ u_1, \ldots, u_s \} \)
(metric with edge lengths \(1 \))
\(\leadsto \) map \(X(\mathbb{C}((t))) \rightarrow \{ u_1, \ldots, u_s \} \)

well-behaved with respect to finite extensions \(\mathbb{C}((t^{1/n}))/\mathbb{C}((t)) \)
\(\leadsto \) specialisation map \(\tau : X(\mathbb{C}\{\{t\}\}) \rightarrow \Gamma_\mathbb{Q} \)

Theorem
Brill wins with starting positing \(D \) on \(X(\mathbb{C}\{\{t\}\}) \)
\(\Rightarrow \) Baker wins with starting position \(\tau(D) \) on \(\Gamma_\mathbb{Q} \)
Consequences of the Specialisation Lemma

Theorem (Conrad)
Any graph Γ is the dual graph of some strongly semistable model \mathcal{X} whose generic fibre X has genus equal to that of Γ.

Kleiman-Laksov ($\rho \geq 0$ implies B wins, say over $\mathbb{C}\{\{t\}\}$)
\Rightarrow same statement for metric Γ.

No combinatorial proof is known!

Cools-D-Payne-Robeva ($\rho < 0 \Rightarrow$ B loses for suitable Γ)
\Rightarrow Griffiths-Harris 1 (and 2, and probably 3).
Example

g = 4, d = 3, r = 1
\(g - d + r = 2 \)
r + 1 = 2, \(\rho = 0 \)

\[
\begin{array}{cc}
1 & 3 \\
2 & 4 \\
\end{array}
\] \(\rightsquigarrow \) 1, 2, 3, 2, 1

\[
\begin{array}{cc}
1 & 2 \\
3 & 4 \\
\end{array}
\] \(\rightsquigarrow \) 1, 2, 1, 2, 1
A larger example

\[g = 7, d = 7, r = 2 \]
\[\Rightarrow g - d + r = 2, r + 1 = 3, \rho = 1 \]
\[
\begin{array}{ccc}
1 & 2 & 4 \\
3 & 6 & 7
\end{array}
\Rightarrow (21, 31, 32, 42, 31, 31, 32, 21) \text{ lingering lattice path}

Proposition
B’s starting position \(\Rightarrow \) lingering lattice path in \(\mathbb{Z}^r \);
B wins iff path stays in chamber \(\{(x_1, \ldots, x_r) \mid x_1 > x_2 > \ldots > x_r > 0\} \).
Chips at vertices?

Theorem (van der Pol)
\(\rho \geq 0 \) and \(\Gamma \) a cactus graph
\(\Rightarrow \) B has winning positions with all chips at vertices.

Future goals:
1. Understand Kleiman-Laksov for (metric) graphs.
2. Castryck-Cools’ gonality conjecture.
Advertisement

84th European Study Group Mathematics with Industry

- 5 or 6 industrial problems
- one week of intensive collaboration
- about 70 participating mathematicians
- hosted by Eurandom, Eindhoven, 30 January-3 February 2012
- Google SWI 2012 mathematics