A tropical approach to secant varieties

Jan Draisma

Genua, 24 April 2007
Prototypical example: polynomial interpolation

Set–up:
\(d \in \mathbb{N}\)

\(p_1, \ldots, p_k\) general points in \(\mathbb{C}^2\)

\(\text{codim}\{ f \in \mathbb{C}[x, y]_{\leq d} \mid \forall i : f(p_i) = f_x(p_i) = f_y(p_i) = 0 \} = ??\)

expect: \(\min\{3k, \binom{d+2}{2}\}\) (upper bound)

Hirschowitz (1985):
correct, unless \((d, k) = (2, 2)\) or \((d, k) = (4, 5)\) (dim 1 instead of 0)

D (2006): new proof using tropical geometry, paper and scissors

Alexander and Hirschowitz (1995): more variables
Also doable tropically??

Brannetti (2007, student of Ciliberto): three variables, tropically
Secant varieties

C a closed cone in a K-space V, $k \in \mathbb{N}$

$kC := \{ v_1 + \ldots + v_k \mid v_i \in C \}$,

the k-th secant variety of C

Example 1.

- $C_1 = \text{rank} \leq 1$ matrices in $V_1 = M_m$
 $kC_1 = \text{rank} \leq k$ matrices

- $C_2 = \{ z_1 \wedge z_2 \} \subseteq V_2 := \wedge^2 K^m$
 cone over Grassmannian of 2-spaces in K^m
 $kC_2 = \text{skew-symmetric matrices of rank} \leq 2k$

- $C_3 = \text{cone over Grassmannian of isotropic 2-spaces in } K^m$
 $2C_3$ and $3C_3$ are complicated
 $kC_3 = kC_2$ for $k \geq 4$ (Baur and Draisma, 2004)
Non-defectiveness

Note: \(\dim kC \leq \min\{k \dim C, \dim V\} \), the expected dimension.

Definition 2.
\(kC \) is non-defective if \(\dim kC \) is as expected.
\(C \) is non-defective if all \(kC \) are.

Many \(C \)'s are non-defective, but hard to prove so!

Secant dimensions known for:

- Veronese embeddings (Alexander-Hirschowitz)
- certain Grassmannians and certain Segre(-Veronese) embeddings (Catalisano, Geramita, Gimigliano)
- certain highest-weight orbits (Baur, Draisma, de Graaf)
Goal of this talk

Combinatorial lower bound for $\dim kC$ where

$$C = \{ v_1^{d_1} \otimes v_2^{d_2} \otimes \ldots \otimes v_p^{d_p} \mid v_i \in \mathbb{C}^{n_i} \} \subseteq S^{d_1}(\mathbb{C}^{n_1}) \otimes \ldots \otimes S^{d_p}(\mathbb{C}^{n_p})$$

(Segre-Veronese embeddings)

Conjecture 3. This lower bound is always sharp.

Lots of evidence!

Example 4.

$$S^2(\mathbb{C}^2) \otimes S^2(\mathbb{C}^2) \otimes S^2(\mathbb{C}^2):$$

$$(\dim kC)_k = (4, 8, 12, 16, 20, 24, 26, 27)$$
Aside: relation to polynomial interpolation

\[V = K^m \]
\[C := \{v^d\} \subseteq S^dV \]
\[\dim kC = ? \]

Lemma 5 (Terracini, 1911). For \(v_1, \ldots, v_k \in V \) generic
\[\dim kC = \dim T_{v_1}C + \ldots + \dim T_{v_k}C. \]

Lasker, 1904:
\[T_{v_i}C = \{ f \in S^d(V^*) \mid f \text{ is singular in } [v_i] \in \mathbb{P}V \}^0 \]
so
\[\dim kC = \text{codim} \{ \text{hom. pols. of degree } d \text{ singular in all } [v_i] \}. \]
Tropical geometry: main definition

Set-up:
\[v : K \to \mathbb{R} := \mathbb{R} \cup \{\infty\} \text{ non-Archimedean valuation} \]

\[(v^{-1}(\infty) = \{0\}, v(ab) = v(a) + v(b), \text{ and } v(a + b) \geq \min\{v(a), v(b)\} \]

think \(K \) =Laurent series over \(\mathbb{C} \) in \(t \)

technical conditions on \((K, v)\)

\[X \subseteq K^n \text{ closed subvariety} \]
\[\mapsto TX := \{v(x) = (v(x_1), \ldots, v(x_n)) | x \in X\} \]

\(\text{tropicalisation of } X \)

depends on coordinates!
Codimension one

X zero set of one polynomial $f = \sum_{\alpha \in \mathbb{N}^n} c_\alpha x^\alpha$

$\mathcal{T} f(\xi) := \min_{\alpha \in \mathbb{N}^n} (v(c_\alpha) + \langle \xi, \alpha \rangle)$ tropicalisation of f

Theorem 6 (Einsiedler–Kapranov–Lind).

$\mathcal{T} X = \{ \xi \in \overline{\mathbb{R}}^n \mid \mathcal{T} f \text{ not linear at } \xi \}$

\rightsquigarrow tropical hypersurfaces are polyhedral complexes!

Example:

$f = x_1 + x_2 - 1$ (line)

$\mathcal{T} f = \min\{\xi_1, \xi_2, 0\}$
Plane Curves: conics
Plane Curves: a cubic
Aside: counting plane curves

Proposition 7. \(\exists \) characterisation of tropical curves of degree \(d \) in the plane.

Mikhalkin (re)computed the number of *classical* degree \(d \), genus \(g \) plane curves through \(3d + g - 1 \) general points:

count *tropical* such curves, each with a certain multiplicity.

Caporaso–Harris in 1998 needed starker algebraic geometry!

algorithms for enumerating such tropical curves
(Mikhalkin, Gathmann–Markwig)
Higher codimension

I the ideal of $X \subseteq K^n$

Theorem 8 (EKL 2004, SS 2003, see also D 2006).

\[
\mathcal{T} X = \{(v'(x_1), \ldots, v'(x_n)) \mid v' : K[X] \to \overline{\mathbb{R}} \text{ ring valuation extending } v\}
\]

\[
= \{w \in \overline{\mathbb{R}}^n \mid \forall f \in I : \mathcal{T} f \text{ not linear at } w\}
\]

Theorem 9 (Bogart–Jensen–Speyer–Sturmfels–Thomas (2005)).

∃ finite subset of I for which previous theorem is true

\[\leadsto \text{tropical basis (hard to compute!)}\]

\[\leadsto \mathcal{T} X \text{ is a polyhedral complex}\]

Theorem 10 (Bieri–Groves (1985), Sturmfels).

\[X \text{ irreducible of dimension } d \Rightarrow \dim \mathcal{T} X = d\]
Tropical lower bounds on \(\dim kC \)

<table>
<thead>
<tr>
<th>algebraic geometry</th>
<th>tropical geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>embedded affine variety (X \subseteq K^n)</td>
<td>polyhedral complex (\mathcal{T}(X) \subseteq \mathbb{R}^n)</td>
</tr>
<tr>
<td>polynomial map (f)</td>
<td>piecewise linear map (\mathcal{T}(f))</td>
</tr>
<tr>
<td>(\dim X)</td>
<td>(\dim \mathcal{T}(X))</td>
</tr>
</tbody>
</table>

Strategy: prove \(\dim \mathcal{T}(kC) = k \dim C \); then \(kC \) is non–defective. But \(kC \) not known, let alone \(\mathcal{T}(kC) \)!

Proposal:

- parameterise \(h : K^m \rightarrow C \subseteq V \)
- tropicalise \(f : (K^m)^k \rightarrow kC \), \((z_1, \ldots, z_k) \mapsto h(z_1) + \ldots + h(z_k) \)
- compute \(\text{rk } d\mathcal{T}(f) \) at a good point \(\leadsto \) lower bound on \(\dim \mathcal{T}kC \)
A (simplified) theorem

\[h = (h_1, \ldots, h_n) : K^m \rightarrow C \subseteq K^n \] parameterisation

assume each \(h_b = c_b x^{\alpha_b} \neq 0 \) (1 term)

for \(l = (l_1, \ldots, l_k) \) \(k \) affine–linear functions on \(\mathbb{R}^m \) set
\[C_i(l) := \{ \alpha_b | l_i(\alpha_b) < l_j(\alpha_b) \text{ for all } j \neq i \} \]

Theorem II (Draisma, 2006).

\[
\dim kC \geq \sum_i (1 + \dim \text{Aff}_{\mathbb{R}} C_i(l))
\]

Lower bound=3+2+1
Funny optimisation problem

\[A \subseteq \mathbb{R}^n \text{ finite, } k \in \mathbb{N} \]

Maximise \(\sum_i (1 + \dim \text{Aff}_\mathbb{R} C_i(l)) =:* \)

over all \(l = (l_1, \ldots, l_k) \), each \(l_i \) affine–linear

Corollary 12.
\[A = \{ \alpha_b \mid b \} \] exponents of monomials in parameterisation
draw \(A \) on \(m \)–dimensional paper
cut paper into \(k \) pieces
compute sg. like *
\(\leadsto \) lower bound on \(\dim kC \)
Generalisation of Theorem 11

Optimisation problem:
Given
\(k \in \mathbb{N} \)
\(A = (A_1, \ldots, A_n) \) list of finite subsets of \(\mathbb{R}^n \)

Optimisation domain
\(k \)-tuples \(l = (l_1, \ldots, l_k) \) of affine linear functions on \(\mathbb{R}^n \)

Objective function
\(\sum_{i=1}^{k} (1 + \dim \text{Aff}_{\mathbb{R}} C_i(l)) \)
where \(C_i = \bigcup_{b=1}^{n} \{ \alpha \in A_b \mid f_i(\alpha) < f_j(\beta) \text{ for all } (\beta, j) \in A_b \times \{1, \ldots, k\} \} \)

Optimal value \(\text{AP}^*(A, k) \)

Theorem 13. \(h = (h_1, \ldots, h_n) : K^m \to C \subseteq K^n \) parametrisation
\(A_b \subseteq \mathbb{N}^m \) support of \(h_b \)
then \(\text{AP}^*(A, k) \leq \dim kC \)
Results with Karin Baur

Non–degenerate:

• all Segre–Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1$ except $(\text{even}, 2)$ (Catalisano-Geramita-Gimigliano)

• all Segre–Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ except $(\text{even}, 1, 1)$ (Catalisano-Geramita-Gimigliano)

• Segre embedding of $(\mathbb{P}^1)^6$ (cells for $k = 9$: 8 disjoint Hamming balls of radius 1 and one cell in the middle)

• $\{\text{flags point} \subset \text{line} \subset \mathbb{P}^2\}$ non–defective in all embeddings except those of highest weight $\omega_1 + \omega_2$ (adjoint representation) or $2\omega_1 + 2\omega_2$

• all Segre–Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^2$ except $(2, \text{even})$ and $(3, 1)$
Rationale

Results by others:

- Veronese embeddings of \mathbb{P}^3 (Brannetti)
- Segre embeddings of $(\mathbb{P}^1)^d$ for $d = 1, \ldots, 9$
 (Halupczok, tropically with computer)

Conjecture: tropical lower bound sharp for all Segre-Veronese embeddings.
Some pictures

picture suggests: S-V embedding of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ of degree $(2, 2, 2)$ has defective $7C$. Indeed!

Minimal orbit in representation of SL_3 of highest weight $(5, 1)$ is non-defective.
Conclusion

Non-defectiveness often provable by optimising a strange polyhedral-combinatoric objective function.

Hope a point in $T(kC)$ with full-dimensional neighbourhood gives restrictions on the ideal of kC. Sufficient to settle one or two more cases of GSS?

Segre-Veronese is the given bound always correct?

Other minimal orbits Smallest flag variety doable with a trick: reduce all A_b in Theorem 13 to singletons, and use Voronoi-variant. In general: which parametrisation to use? (Littelmann-Bernstein-Zelevinsky polytopes?)