Tropical reparameterisations

Jan Draisma
Eindhoven University of Technology

Bernd Sturmfels’s Clifford Lectures, 12 November 2008
Two ways to describe a line

implicitly, by equations
\[X := \{(x, y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2 \]

explicitly, by parameterisation
\[\phi : \mathbb{A}^1 \to \mathbb{A}^2, \quad u \mapsto (u, u + 1); \quad X = \text{im } \phi \]

elimination theory: parameterisation \(\sim\) equations?
Tropicalising those two ways

by equations
\[X = \{(x, y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2 \]
\[TX = \{ (\xi, \eta) \mid \min\{\eta, \xi, 0\} \text{ is attained at least twice} \} \subset \mathbb{R}_\infty^2 \]

by parameterisation
\[\phi : u \mapsto (u, u + 1) \]
\[\mathcal{T}\phi : v \mapsto (v, \min\{v, 0\}) \]

\[\text{im} \mathcal{T}\phi \subseteq TX, \text{ in general} \subseteq \]
Reparameterisation for the line

\[\alpha : \mathbb{A}^1 \to \mathbb{A}^1, \quad s \mapsto s - 1 \]
\[\phi' := \phi \circ \alpha : \mathbb{A}^1 \to \mathbb{A}^2, \quad s \mapsto (s - 1, s) \]
\[\mathcal{T}(\phi') : \mathbb{R}_\infty \to \mathbb{R}_\infty^2, \quad \sigma \mapsto (\min\{\sigma, 0\}, \sigma) \]

Two reparameterisations tropically cover \(\mathcal{T}X \)
Four questions

\(\phi : \mathbb{A}^m \to \mathbb{A}^n \) polynomial map
\(X := \text{im} \phi \text{ algebraic variety} \)
then \(\text{im} \mathcal{T} \phi \subseteq \mathcal{T} X \)

\[\exists \, ? \text{ finitely many (or one) reparameterisations } \alpha_i: \mathbb{A}^{p_i} \to \mathbb{A}^m \]
(or rational maps) such that \(\bigcup_i \text{im} \mathcal{T} (\phi \circ \alpha_i) = \mathcal{T} (X) \).

Remark. Sturmfels-Tevelev-Yu (2007) describe \(\mathcal{T} X \) from \(\phi \) in case of generic coefficients; generalisations use Hacking-Keel-Tevelev’s geometric tropicalisation (2007).
Two observations

Lemma. If $\phi = (\phi_1, \ldots, \phi_n)$ with all ϕ_i homogeneous of same degree, then the four questions are equivalent.

Multiply with common denominator; combine several reparameterisations into one.

Proposition. All four questions reduce to the case where X is a hypersurface in \mathbb{A}^n.

Choose “generic” monomial map $\pi : \mathbb{A}^n \to \mathbb{A}^{d+1}$ where $d = \dim X$; reparameterisations that work for $\pi \circ \phi$ also work for ϕ.
Linear spaces

Theorem (Yu-Yuster, 2006). \(\phi : \mathbb{A}^m \to X \subseteq \mathbb{A}^n \) linear, given by a matrix \(\phi \)

Then \(\text{im} \, T \phi = T \, X \iff \) every vector \(v \in X \) of minimal support (cocircuit) is scalar multiple of a column of \(\phi \).

(This can be achieved form by composing \(\phi \) with a linear map \(\mathbb{A}^p \to \mathbb{A}^m \).)

Example. \(\phi : \mathbb{A}^2 \to \mathbb{A}^3 \) given by \(\phi = \begin{bmatrix} t & 0 \\ 0 & 1 \\ 1 & t \end{bmatrix} \) over \(\mathbb{C}((t)) \)

\(X = \{ (x, y, z)^T \mid x + t^2 y - tz = 0 \} \)

\(T \, X = C_1 \cup C_2 \cup C_3 \) with

\(C_1 = \{ (\xi, \xi - 2, \zeta) \mid \zeta \geq \xi - 1 \} \)

\(C_2 = \{ (\xi, \eta, \xi - 1) \mid \eta \geq \xi - 2 \} \)

\(C_3 = \{ (\xi, \eta, \eta + 1) \mid \xi \geq \eta + 2 \} \)

\(T \phi : (\alpha, \beta) \mapsto (\alpha + 1, \beta, \min\{\alpha, \beta + 1\}) \); \(\text{im} \, T \phi = C_2 \cup C_3 \)
Example, continued

\[\phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 & t^2 \\ 0 & 1 & -1 \\ 1 & t & 0 \end{bmatrix} \]

The last matrix contains all cocircuits of \(X \), so

\[\text{im} \mathcal{T} \left(\phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} \right) = C_1 \cup C_2 \cup C_3 = \mathcal{T} X \]

by Yu and Yuster’s theorem.
A Grassmannian from a linear space

\[\phi : \mathbb{A}^n \to X \subseteq \mathbb{A}^{\binom{n}{2}}, \quad (x_1, \ldots, x_n) \mapsto (x_i - x_j)_{i < j} \]

zero patterns in the image \(\rightsquigarrow \) partitions of \(\{1, \ldots, n\} \)
cocircuits \(\rightsquigarrow \) partitions into two parts
so \(\exists \alpha : \mathbb{A}^{2^{n-1}-1} \to \mathbb{A}^n \) linear with \(\text{im} \, \mathcal{T}(\phi \circ \alpha) = \mathcal{T}X \)

\[\psi : \mathbb{A}^n \times \mathbb{A}^n \to Y \subseteq \mathbb{A}^{\binom{n}{2}}, \quad (u, x) \mapsto (u_i u_j (x_i - x_j))_{i < j} \]

\(Y = \text{Grassmannian of 2-dimensional subspaces of } n\text{-space} \)

\(\text{im} \, \mathcal{T}(\psi \circ (\text{id} \times \alpha)) = \mathcal{T}Y \), the \textit{tropical Grassmannian} studied by Speyer and Sturmfels (2004) and many others

Points of \(Y \) correspond to \textit{tree metrics}, by the above obtained from tropical linear combinations of 2-partitions by stretching ends.
Example with $n = 4$

$\{1, 234\}$ short-hand for $(d_{ij})_{i<j}$ with $d_{1j} = 0$ and all other $d_{ij} = \infty$

$$(1 \otimes \{1, 234\}) \oplus (2 \otimes \{13, 24\}) \oplus (3 \otimes \{14, 23\})$$

equals the tree metric of

![Tree Metric Diagram]

Remark. Internal edges have negative length. Edges adjacent to leaves can be arbitrarily altered using the ν_i.
Local tropical reparameterisations

\[\phi : \mathbb{A}^m \to \mathbb{A}^n \text{ polynomial map} \]

\[X := \text{im } \phi \text{ algebraic variety of dimension } d \]

Theorem. For almost all \(\xi \in TX \)

\[\exists \alpha : T^d \to \mathbb{A}^m \text{ such that} \]

\[\text{im } T (\phi \circ \alpha) \supset a d\text{-dimensional neighbourhood of } \xi. \]

Remark. • \(\alpha \) is allowed to have Laurent polynomial components

• \(d \) is also the dimension of \(TX \)

• if all \(\phi_i \) homogeneous of the same degree, \(k \) such local reparameterisations can be combined to a reparameterisation \(\mathbb{A}^{kd} \to \mathbb{A}^m \)

• *almost all* means the \(\xi_i \) span a \(d \)-dimensional \(\mathbb{Q} \)-subspace of \(\mathbb{R} \)
Proof sketch

1. assume ξ_1, \ldots, ξ_d linearly independent over \mathbb{Q}
2. consider $K = \mathbb{C}(t_1, \ldots, t_d)$ with valuation $v(t_i) = \xi_i$
3. take a point p of \mathbb{A}^m with coordinates in \overline{K} such that $v(\phi(p)) = \xi$; exists
4. approximate p with a point q in $\mathbb{C}[t_1^{\pm1/N}, \ldots, t_d^{\pm1/N}]$ such that $v(\phi(q)) = \xi$ (multivariate Puiseux theorem)
5. set $u_i := t_i^{1/N}$
6. $q(u_1, \ldots, u_n)$ is the required reparameterisation

Remark. • not yet very constructive, but I’m collaborating with Anders Jenssen to make it so
• not clear that finitely many suffice...