Admissible Rules of (Fragments of) R-Mingle

Laura Janina Schnüriger

joint work with George Metcalfe
Universität Bern

Les Diablerets
31 January 2015
Table of contents

1. The logic R-Mingle RM^t
 1.1 Notations
 1.2 Corresponding algebraic semantics
 1.3 Sugihara Monoids
 1.4 This talk

2. Finding the bases
 2.1 Idea of how to find the bases
 2.2 Finding the bases
 2.3 The bases

3. Further Work
 3.1 Our Conjecture

4. References
R-Mingle

Relevance logic \mathbf{R} with Mingle

$p \rightarrow (p \rightarrow p)$
R-Mingle

Relevance logic R with Mingle

\[p \to (p \to p) \]

RM with additional constant \(t \)

Language

\[\mathcal{L}_t = \{ \land, \lor, \to, \cdot, \neg, t \} \]
Definition

rules are denoted by Γ/φ for finite $\Gamma \cup \{\varphi\} \subset \text{Fm}_L$
Definition

- Rules are denoted by Γ / φ for finite $\Gamma \cup \{\varphi\} \subset \text{Fm}_L$
- Γ / φ is derivable in a logic L if $\Gamma \vdash_L \varphi$
Definition

- rules are denoted by Γ/φ for finite $\Gamma \cup \{\varphi\} \subset Fm_L$
- Γ/φ is derivable in a logic L if $\Gamma \vdash_L \varphi$
- Γ/φ is admissible in a logic L if for all substitutions (homomorphisms) $\sigma : Fm_L \rightarrow Fm_L$:

 $$\vdash_L \sigma(\psi) \text{ for all } \psi \in \Gamma \Rightarrow \vdash_L \sigma(\varphi)$$
Definition

- rules are denoted by Γ/φ for finite $\Gamma \cup \{\varphi\} \subset \text{Fm}_L$
- Γ/φ is derivable in a logic L if $\Gamma \vdash_L \varphi$
- Γ/φ is admissible in a logic L if for all substitutions (homomorphisms) $\sigma: \text{Fm}_L \rightarrow \text{Fm}_L$:
 \[\vdash_L \sigma(\psi) \text{ for all } \psi \in \Gamma \implies \vdash_L \sigma(\varphi) \]
- $\{\Gamma/\varphi \mid \Gamma/\varphi \text{ is admissible in } L\} =: \sim_L$
Definition

- rules are denoted by Γ/φ for finite $\Gamma \cup \{\varphi\} \subset \text{Fm}_L$
- Γ/φ is derivable in a logic L if $\Gamma \vdash_L \varphi$
- Γ/φ is admissible in a logic L if for all substitutions (homomorphisms) $\sigma : \text{Fm}_L \to \text{Fm}_L$:
 \[
 \vdash_L \sigma(\psi) \text{ for all } \psi \in \Gamma \implies \vdash_L \sigma(\varphi)
 \]
- $\{\Gamma/\varphi \mid \Gamma/\varphi \text{ is admissible in } L\} =: \sim_L$
- Let R be a set of rules. $L + R =$ smallest logic containing $L \cup R$
Definition

- rules are denoted by Γ/φ for finite $\Gamma \cup \{\varphi\} \subset \text{Fm}_L$
- Γ/φ is derivable in a logic L if $\Gamma \vdash_L \varphi$
- Γ/φ is admissible in a logic L if for all substitutions (homomorphisms) $\sigma: \text{Fm}_L \rightarrow \text{Fm}_L$:
 $$\vdash_L \sigma(\psi) \text{ for all } \psi \in \Gamma \Rightarrow \vdash_L \sigma(\varphi)$$
- $\{\Gamma/\varphi \mid \Gamma/\varphi \text{ is admissible in } L\} =: \sim_L$
- Let \mathcal{R} be a set of rules.
 $$L + \mathcal{R} = \text{smallest logic containing } L \cup \mathcal{R}$$
- \mathcal{R} is a basis for the admissible rules of L if $L + \mathcal{R} = \sim_L$
Corresponding algebraic semantics

\[Z^\circ = \langle \mathbb{Z} \setminus \{0\}, \min, \max, \to, \cdot, -, 1 \rangle \]

\[x \to y := \begin{cases}
\max\{-x, y\} & \text{if } x \leq y \\
\min\{-x, y\} & \text{if } x > y
\end{cases} \]

\[x \cdot y := \begin{cases}
\min\{x, y\} & \text{if } |x| = |y| \\
y & \text{if } |x| < |y| \\
x & \text{if } |x| > |y|
\end{cases} \]
Corresponding algebraic semantics

\[Z^\circ = \langle \mathbb{Z} \setminus \{0\}, \min, \max, \to, \cdot, -, 1 \rangle \]

\[\to \quad x \to y := \begin{cases} \max\{-x, y\} & \text{if } x \leq y \\ \min\{-x, y\} & \text{if } x > y \end{cases} \]

\[\cdot \quad x \cdot y := \begin{cases} \min\{x, y\} & \text{if } |x| = |y| \\ y & \text{if } |x| < |y| \\ x & \text{if } |x| > |y| \end{cases} \]

\[Z_{2n} = \langle \{-n, \ldots, -1, 1, \ldots, n\}, \min, \max, \to, \cdot, -, 1 \rangle \]

\[Z_{2n+1} = \langle \{-n, \ldots, -1, 0, 1, \ldots, n\}, \min, \max, \to, \cdot, -, 1 \rangle \]
Sugihara Monoids

$SM = \forall (Z^\circ)$ the variety of Sugihara Monoids generated by Z°. SM provides an equivalent algebraic semantics for RM^t

$$\{\psi \approx |\psi| \mid \psi \in \Gamma\} \models_{SM} \varphi \approx |\varphi| \iff \Gamma \models_{SM} \varphi \iff \Gamma \vdash_{RM^t} \varphi$$

for any rule Γ / φ.

Laura Janina Schnüriger

Admissible Rules of (Fragments of) R-Mingle
This talk

Bases for admissible rules of the fragments of RM^t with the following languages

\begin{align*}
\mathcal{L}_1 &= \{\rightarrow, t\} \\
\mathcal{L}_2 &= \{\rightarrow, \cdot, t\} \\
\mathcal{L}_m &= \{\rightarrow, \neg, t\} = \{\rightarrow, \cdot, \neg, t\} \text{ multiplicative fragment.}
\end{align*}
This talk

Bases for admissible rules of the fragments of RM^t with the following languages

\[\mathcal{L}_1 = \{ \rightarrow, t \} \]
\[\mathcal{L}_2 = \{ \rightarrow, \cdot, t \} \]
\[\mathcal{L}_m = \{ \rightarrow, \neg, t \} = \{ \rightarrow, \cdot, \neg, t \} \text{ multiplicative fragment.} \]

$\text{SM} \upharpoonright \mathcal{L}_i$ algebraic semantics corresponding to the \mathcal{L}_i-fragment of RM^t, $i \in \{1, 2, m\}$
This talk

Bases for admissible rules of the fragments of RM^t with the following languages

$$L_1 = \{\to, t\}$$

$$L_2 = \{\to, \cdot, t\}$$

$$L_m = \{\to, \neg, t\} = \{\to, \cdot, \neg, t\}$$ multiplicative fragment.

$SM \upharpoonright L_i$ algebraic semantics corresponding to the L_i-fragment of RM^t, $i \in \{1, 2, m\}$

Remark $\text{RM}^t \upharpoonright \{\land, \to, t\}$ has empty basis (= it is structurally complete).

Raftery, Olson
Idea of how to find the bases

Recall

\[SM = \forall(SM) = \forall(Z^\circ) \]
Idea of how to find the bases

Recall

\[SM = \bigvee(SM) = \bigvee(Z^\circ) \]

Lemma S.

\[\bigvee(SM \upharpoonright L_i) = \bigvee(Z_4 \upharpoonright L_i), \quad i \in \{1, 2, m\} \]
Idea of how to find the bases

Recall that if for two varieties \(\mathbb{V}_1 \) and \(\mathbb{V}_2 \) we have:
\[
\mathbb{V}_1 = \mathbb{V}_2 \iff (\vdash_{\mathbb{V}_1} \varphi \iff \vdash_{\mathbb{V}_2} \varphi) \text{ for all formulas } \varphi.
\]
Idea of how to find the bases

- Recall that if for two varieties \mathcal{V}_1 and \mathcal{V}_2 we have:
 $\mathcal{V}_1 = \mathcal{V}_2$ iff $(\models_{\mathcal{V}_1} \varphi \iff \models_{\mathcal{V}_2} \varphi$ for all formulas $\varphi)$.
- A rule is admissible in $\text{RM}^t \upharpoonright \mathcal{L}_i$ if:
 \iff it is admissible in $\text{SM} \upharpoonright \mathcal{L}_i$
 \iff it is admissible in $\text{Z}_4 \upharpoonright \mathcal{L}_i$
Idea of how to find the bases

- Recall that if for two varieties V_1 and V_2 we have:
 $$V_1 = V_2 \iff (\vdash_{V_1} \varphi \iff \vdash_{V_2} \varphi \text{ for all formulas } \varphi).$$
- A rule is admissible in $RM^t \upharpoonright L_i$ if it is admissible in $SM \upharpoonright L_i$ if it is admissible in $Z_4 \upharpoonright L_i$
- Interested in algebras s.t. admissibility in $Z_4 \upharpoonright L_i$ corresponds to validity in these algebras.
Idea of how to find the bases

- Recall that if for two varieties \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) we have:
 \[\mathcal{V}_1 = \mathcal{V}_2 \iff (\vdash_{\mathcal{V}_1} \phi \iff \vdash_{\mathcal{V}_2} \phi) \text{ for all formulas } \phi. \]
- A rule is admissible in \(\text{RM}^t \upharpoonright \mathcal{L}_i \) if and only if it is admissible in \(\text{SM} \upharpoonright \mathcal{L}_i \) if and only if it is admissible in \(\mathcal{Z}_4 \upharpoonright \mathcal{L}_i \).
- Interested in algebras s.t. admissibility in \(\mathcal{Z}_4 \upharpoonright \mathcal{L}_i \) corresponds to validity in these algebras.
- Then: Axiomatize the quasivarieties generated by these algebras to get an axiomatization of the admissible rules of our fragments.
Theorem

Let \(\mathcal{B} \) be an algebra and \(\mathcal{F}_\mathcal{B}(\omega) \) its free algebra on countably infinite many generators. Then

\[
\Gamma / \varphi \text{ is } \mathcal{B}\text{-admissible} \iff \Gamma \models_{\mathcal{F}_\mathcal{B}(\omega)} \varphi.
\]
Finding the bases

The following are equivalent:

(i) \(\Gamma/\varphi \) is \(\mathbf{B} \)-admissible \iff \(\Gamma \models_A \varphi \)

(ii) \(Q(A) = Q(F_B(\omega)) \)
Finding the bases

Lemma

The following are equivalent:

(i) Γ/φ is B-admissible $\iff \Gamma \models_{A} \varphi$

(ii) $\mathbb{Q}(A) = \mathbb{Q}(F_{B}(\omega))$

So we want to find A which is “easy” to axiomatize - but how?
Finding the bases

The following are equivalent:

(i) \(\Gamma/\varphi \) is \(\mathcal{B} \)-admissible \iff \(\Gamma \models_\mathcal{A} \varphi \)

(ii) \(\mathcal{Q}(\mathcal{A}) = \mathcal{Q}(\mathcal{F}_\mathcal{B}(\omega)) \)

So we want to find \(\mathcal{A} \) which is “easy” to axiomatize - but how?

\(\mathcal{A} \subseteq \mathcal{F}_\mathcal{B}(\omega), \mathcal{B} \in \mathcal{H}(\mathcal{A}) \ \Rightarrow \ \mathcal{Q}(\mathcal{A}) = \mathcal{Q}(\mathcal{F}_\mathcal{B}(\omega)) \)
The algebras in our case

Lemma S.

Let $Z'_4 \subset (Z_2 \times Z_3) \upharpoonright L_1$, $Z''_4 \subset (Z_2 \times Z_3) \upharpoonright L_2$, $(Z_2 \times Z_3) \upharpoonright L_m$ be the algebras pictured. Then

(i) $\mathcal{Q}(F_{Z_4}|L_1(\omega)) = \mathcal{Q}(Z'_4)$

(ii) $\mathcal{Q}(F_{Z_4}|L_2(\omega)) = \mathcal{Q}(Z''_4)$

(iii) $\mathcal{Q}(F_{Z_4}|L_m(\omega)) = \mathcal{Q}((Z_2 \times Z_3) \upharpoonright L_m)$

Figure: Z'_4 and Z''_4
Definition

\[|\psi| := \psi \rightarrow \psi \]
Definition

\[|\psi| := \psi \rightarrow \psi \]

\[\varphi \Rightarrow \psi := (\varphi \rightarrow |\psi|) \rightarrow (\varphi \rightarrow \psi) \]
Definition

- $|\psi| := \psi \rightarrow \psi$
- $\varphi \Rightarrow \psi := (\varphi \rightarrow |\psi|) \rightarrow (\varphi \rightarrow \psi)$
- $\{p, p \Rightarrow q\}/q$ (A)
Definition

- $|\psi| := \psi \rightarrow \psi$
- $\varphi \Rightarrow \psi := (\varphi \rightarrow |\psi|) \rightarrow (\varphi \rightarrow \psi)$
- $\{p, p \Rightarrow q\}/q$ (A)
- $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \cdot (\psi \rightarrow \varphi)$

Laura Janina Schnüriger

Admissible Rules of (Fragments of) R-Mingle
Definition

- $|\psi| := \psi \rightarrow \psi$
- $\varphi \Rightarrow \psi := (\varphi \rightarrow |\psi|) \rightarrow (\varphi \rightarrow \psi)$
- $\{p, p \Rightarrow q\}/q$ \hspace{1cm} (A)
- $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \cdot (\psi \rightarrow \varphi)$
- $\{-(|p_1| \leftrightarrow \ldots \leftrightarrow |p_n|)\}/q$ \hspace{1cm} (R_n), \hspace{0.5cm} n \in \mathbb{N}.$
The Bases

Lemma S.

We have the following axiomatizations:

(i) \[\text{RM}^t \upharpoonright \mathcal{L}_1 + (A) \text{ has equivalent q.v. } \mathcal{Q}(\mathbb{Z}_4') \]
(ii) \[\text{RM}^t \upharpoonright \mathcal{L}_2 + (A) \text{ has equivalent q.v. } \mathcal{Q}(\mathbb{Z}_4'') \]
(iii) \[\text{RM}^t \upharpoonright \mathcal{L}_m + (A) + \{(R_n)\}_{n \in \mathbb{N}} \text{ has eq. q.v. } \mathcal{Q}((\mathbb{Z}_2 \times \mathbb{Z}_3) \upharpoonright \mathcal{L}_m) \]
The Bases

Lemma S. We have the following axiomatizations:

(i) $\text{RM}_t \upharpoonright \mathcal{L}_1 + (A)$ has equivalent q.v. $\mathbb{Q}(\mathbb{Z}_4')$

(ii) $\text{RM}_t \upharpoonright \mathcal{L}_2 + (A)$ has equivalent q.v. $\mathbb{Q}(\mathbb{Z}_4'')$

(iii) $\text{RM}_t \upharpoonright \mathcal{L}_m + (A) + \{(R_n)\}_{n \in \mathbb{N}}$ has eq. q.v. $\mathbb{Q}((\mathbb{Z}_2 \times \mathbb{Z}_3) \upharpoonright \mathcal{L}_m)$

Theorem S. Then as a Corollary of this lemma

(i) $\{(A)\}$ is a basis for the $\{\rightarrow, t\}$- and $\{\rightarrow, \cdot, t\}$-fragment of RM_t.

(ii) $\{(A)\} \cup \{(R_n)\}_{n \in \mathbb{N}}$ is a basis for $\text{RM}_t \upharpoonright \{\rightarrow, \neg, t\}$.

Our Conjecture

Look again at RM without constant t.
Our Conjecture

Look again at RM without constant t.

$\left(B\right)$

$\{\neg|p| \lor q\}/q$
Our Conjecture

Look again at RM without constant t.

$\{\neg \| p \| \lor q \}/q$

We hope to prove the following:

(i) RM + (B) is almost structurally complete, i.e.,

$$\Gamma \models_{RM} \varphi \Rightarrow \Gamma \vdash_{RM} \varphi$$

whenever there is a substitution

$$\sigma : \text{Fm}_{\mathcal{L}} \rightarrow \text{Fm}_{\mathcal{L}}$$

s.t. for all $\psi \in \Gamma$,

$$\vdash_{RM} \sigma(\psi).$$

(ii) The admissible rules of RM have basis

$$\{(B)\} \cup \{(R_n)\}_{n \in \mathbb{N}}.$$
References

